
JURNAL MANTIK

 INSTITUTE OF COMPUTER SCIENCE
 P-ISSN :  E-ISSN : 26854236  Subject Area : Economy, Science, Education

 Google Scholar
  Garuda
 Website
 Editor URL

History Accreditation

2018 2019 2020 2021 2022 2023 2024





1.10495
Impact Factor

 1411
Google Citations

 Sinta 4
Current
Acreditation



 

Garuda
 Google Scholar

The Effectiveness of Giving Red Spinning Juice on Increasing Hb Levels for Pregnant
Anemia in the Work East Lahewa Health Center Year 2020
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2145-2150

 2022
  DOI: -
  Accred : Sinta 4

Optimization of Virtual Reality-Based Flood Simulation by Manipulating Particle
System
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2117-2126
 2022
  DOI: -
  Accred : Sinta 4

Implementation of Elo Rating System and Player Clustering for Competitive
Matchmaking in Trivia Education Game
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik)

 2022
  DOI: -
  Accred : Sinta 4

Database Forensics in Software as A Service Service using Stored Procedure
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2127-2135

 2022
  DOI: -
  Accred : Sinta 4

Automation Simulation of Plant Watering System using Moisture Sensor Based on
Mobile Devices Urban Farming Method
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2136-2144











https://scholar.google.co.id/citations?user=Wpith2oAAAAJ&hl=en
https://garuda.kemdikbud.go.id/journal/view/15857
https://iocscience.org/ejournal/index.php/mantik
https://iocscience.org/ejournal/index.php/mantik/about/editorialTeam
https://sinta.kemdikbud.go.id/journals/profile/6343
https://sinta.kemdikbud.go.id/journals/google/6343
https://iocscience.org/ejournal/index.php/mantik/article/view/1711/1448
https://iocscience.org/ejournal/index.php/mantik/article/view/1840/1423
https://iocscience.org/ejournal/index.php/mantik/article/view/1886/1449
https://iocscience.org/ejournal/index.php/mantik/article/view/1889/1443
https://iocscience.org/ejournal/index.php/mantik/article/view/1890/1444

 2022
  DOI: -
  Accred : Sinta 4

Disease in Corn Leafe Using Gabor Wavelet and K-Means Clustering Algorithm
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2152-2156

 2022
  DOI: -
  Accred : Sinta 4

Optimization of Tree Algorithms by Resampling and Ensembling in Deffect Prediction
Software:
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2177-2181
 2022
  DOI: -
  Accred : Sinta 4

Analysis of Service Quality and Product Quality on Customer Purchase Decisions in
CV. Surya Indah Jaya Medan with Price as a Variable Intervention
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2156-2164

 2022
  DOI: -
  Accred : Sinta 4

Analysis of Factors Affecting the Work Discipline of Employees CV. Golden Seafresh
Medan
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2165-2170
 2022
  DOI: -
  Accred : Sinta 4

The Effect of Pricing and Product Quality on Purchase Decisions on PT. Gunung
Sentosa Sumatera Utama Industri
Institute of Computer Science (IOCS)
 Jurnal Mantik Vol. 5 No. 4 (2022): February:
Manajemen, Teknologi Informatika dan Komunikasi (Mantik) 2171-2176

 2022
  DOI: -
  Accred : Sinta 4

View more ...











https://iocscience.org/ejournal/index.php/mantik/article/view/1901/1464
https://iocscience.org/ejournal/index.php/mantik/article/view/1911/1488
https://iocscience.org/ejournal/index.php/mantik/article/view/1921/1466
https://iocscience.org/ejournal/index.php/mantik/article/view/1923/1470
https://iocscience.org/ejournal/index.php/mantik/article/view/1924/1474
https://sinta.kemdikbud.go.id/logins

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

61

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Performance Analysis Of Navigation Ai On Commercial Game

Engine: Autodesk Stingray And Unity3D

Moch Fachri
1
, Ali Khumaidi

2
, Nur Hikmah

3
, Nuke L Chusna

4

1,2,3,4

Informatics,

Enginerring Faculty, Universitas Krisnadwipayana, Jl. Raya Jatiwaringin, Jawa Barat 13077, Indonesia

E-mail:
1
moch.fachri@unkris.ac.id,

2
alikhumaidi@unkris.ac.id,

3
nurhikmah@unkris.ac.id,

4
nukelchusna@unkris.ac.id

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 12/02/2020

Revised: 09/03/2020

Accepted: 01/05/2020

This research establish crowd simulation on modern game engine such as

Autodesk Stingray and Unity 3D. This paper explores the navigation system

of both game engine. Furthermore we compare the navigation performance

for each navigation system used by those engine: The gameware Navigation

which is used in Stingray as its middleware for navigation AI, and Unity

Navigation used in Unity3D. We simulate the crowd simulation using

scenario of crossroad and narrow-passage. Experimental result demonstrates

the navigation of hundreds of agents in densely populated environments.
Keywords:

Crowd Simulation,

Agent Navigation,

autodesk Stingray,

unity3D
Copyright © 2020 Jurnal Mantik.

All rights reserved.

1. Introduction

Navigation of character in modern gaming is one of many interest to game technology. Most

modern games engines incorporate navigation tool to support game developers in designing the

movement of the characters in the game. Many game engine designed for the creator to express their

design without any hassle of programming knowledge[1].The AI included on those navigation tool has

various type and algorithm. With variety option available, the developers can simply choose based on

their needs.

This research mainly focused in performance analysis of navigation AI on two commercial game

engine. We choose to compare the navigation performance between Autodesk Gameware navigation used

in stingray game engine with the navigation tool used in unity3D[1-4].

2. System Overview

A. Unity3D Navigation System

Grand design of navigation in Unity navigation tool consist of two major navigation as shown on

figure 1:

1) Global navigation is used to find the corridor across the world. Finding a path across the world is a

costly operation requiring quite a lot of processing power and memory.

2) Local navigation tries to figure out how to efficiently move towards the next corner without

colliding with other agents or moving objects.

In other word, global navigation is how to reason about the level to find the destination, location are

described by navigation mesh component. The navigation mesh is navigable environment in the virtual

world. As already illustrated on figure 1, the agent will access map location which contain the navmesh

data for the environment. Next process is path finding, Unity3D uses A* For the path finding [7]. Last

process involving corridor update that the agent will use for navigating through the environment. Local

navigation is about agent ability to move toward destination[7]. It tries to figure out how to efficiently

move towards the next corner without colliding with other agents or moving objects. Steering process

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

62

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

figures out a desired Velocity (direction and speed) needed to reach the destination. While Obstacle

avoidance process will chooses a new velocity based on steering velocity. The avoidance process will

balances between moving in the desired direction and preventing possible collisions.

Fig 1. Navigation process in Unity navigation tool[7]

There are four major component in Unity Navigation as shown on figure 2[7]:

1) NavMesh (short for Navigation Mesh) is a data structure which describes the walkable surfaces of

the game world and allows to find path from one walkable location to another in the game world.

The data structure is built,or baked, automatically from your level geometry.

2) NavMesh Agent component help you to create characters which avoid each other while moving

towards their goal. Agents reason about the game world using the NavMesh and they know how to

avoid each other as well as moving obstacles.

3) Off-Mesh Link component allows you to incorporate navigation shortcuts which cannot be

represented using a walkable surface. For example, jumping over a ditch or a fence, or opening a

door before walking through it, can be all described as Off-mesh links.

4) NavMesh Obstacle component allows you to describe moving obstacles the agents should avoid

while navigating the world. A barrel or a crate controlled by the physics system is a good example

of an obstacle. While the obstacle is moving the agents do their best to avoid it, but once the

obstacle becomes stationary it will carve a hole in the navmesh so that the agents can change their

paths to steer around it, or if the stationary obstacle is blocking the path way, the agents can find a

different route.

Fig 2. Component of Unity navigation tool [7]

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

63

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

B. Autodesk Stingray Navigation System

Autodesk Gameware Navigation is an AI middleware and NavMesh generation tools by Autodesk

Inc. This middleware is successor of Autodesk Kynapse AI. Autodesk use this middleware in their game

engine (Stingray) as Navigation tool[8]. According to the Autodesk Documentation, Autodesk Gameware

Navigation uses Navmesh to represent what areas of the game world are navigable, just like in Unity

navigation tool. Even the pathfinding employ the same algorithm, the A* algorithm.

Fig 3. Pathfinding process of Autodesk Gameware Navigation [8]

However, the navigation process took different approach. In Autodesk Gameware Navigation, bot

(Autodesk documentation term to calling an agent) ability to move toward it’s navigation are calculated

via livepath. Thus creating path following behaviour for it’s bot to reach it’s destination. The first step in

the Autodesk Gameware Navigation system is to compute an initial path through the NavData, that

connects a starting point (typically the current position of the bot) to a desired destination. As stated

before, Autodesk Gameware Navigation uses A* algorithm for the pathfinding process. For example, in

the figure 5[8] , the yellow Bot has planned a path to a destination on the rooftop. The path goes through

the NavMesh on the ground, follows a NavGraph edge that connects the ground to the rooftop, then has a

final segment on the rooftop from the end of the NavGraph edge to the destination.

Fig 4. Livepath created for the bot to follow [8]

Once a path has successfully calculated, the next process called path following, analyzes the new

path and builds a new structure called the LivePath from it. The LivePath is a dynamic structure that

maintains several important items of contextual information about the path and the state of the Bot’s path

following process. Unlike path created from path finding which is static, livepath will change dynamicly

to adjust the navigation of bot according to environment situation.

In each frame, the Bot calls a trajectory object to determine what movement it should make in the

current frame. The Trajectory is responsible for evaluating the current conditions of the Bot and its path,

and taking into account any other influences such as moving obstacles that may produce collisions.

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

64

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Fig 5. Collision avoidance process [8]

Bot navigation are expected to deal with collision avoidance. So the process must take account into

dynamic changing to penalize the avoidance process. Based on these factors, and on a set of configuration

parameters that control the character’s locomotion, it produces a recommended velocity for the character

to pursue in the current frame. There are three parameter are used to score velocity that will be chosen for

avoiding obstacles.

1) Collision time ratio, collision time is a time limit that serves as a horizon, and compute a collision

time with the collected colliders and navmesh boundaries for each sample. The ratio takes account

into the minimal Time To Collision with the safety Distance

2) Desired velocity distance, the path following already produced a desired velocity. This velocity used

to score the samples based on how far they are relative to this velocity.

3) Previous velocity distance, to stabilize even further, Bot can perform a similar computation relative

to the previously computed velocity

3. Test and Simulation Scenario

In order to test the capability of both navigation system, we create application to simulate certain

crowd condition in both game engine. This application created using prototype method[9]. As shown on

figure 6 we use the same flow in both game engine to create exact application with only difference in

navigation system used.

Fig 6. Prototype Method

1) Design Concept

Our simulation concept is based on two simulation skenario, which is crossroad[5] and narrow

passage scenario[7]. We replicate both scenario environemt in both game engine with same scale. Agents

variation and initial potitioning for each scenario are also replicated. The requirement for agents

navigation already provided in the game engine itself, either Unity3D or Autodesk Stingray. Both of them

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

65

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

also provide other requirement such as Graphics dan Physics engine.

2) Prototyping

Application prototype designed based on crowd scenario. In order to create exact environment for

both game engine, we create the 3D environment using third party program called Sketchup. The 3D

environment model created then imported to both game engine in order to maintain consistent scaling. As

shown in figure 7, the enviroment model will be integrated in each simulation created by each navigation

tool at their respective game engine.

Fig 7. Prototyping Process

3) Prototype Evaluation

Prototype produced were evaluated to ensure the functionality of each application in Unity3D and

Autodesk Stingray. prototype functionality must suitable for crowd simulation purposes. This application

must be able to map the area/building where the movement of the crowd, also able to calculate the

movement to be carried out by a group of crowds to get to the specified point, and able to display the

results of crowd modeling in the form of movement.

If the prototype produced by both game engine meet the above requirements, then the prototype has

been formalized as the final prototype. If there is functionality that has not yet been fulfilled, a revamping

process will begin, starting from the concept design to the protoype-making section. This process is

repeated until the prototype requirement are met. This applies as long as there is no limitation from the

game engine.

4. Result and Discussion

The prototype built on both game engine were able to replicate the simulation scenario as shown in

figure 8 and 9. Both program able to perform similarly for the simulation to occured. While there are

noticeable difference in navigation performance as shown on figure 10 to 13, all agents in both scenario

and both programs were able to complete the scenario.

Fig 8. Snippet from the Crossroad Simulation Process

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

66

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Fig 9. Snippet from the Narrowpassage Simulation Process

The data on figure 10 and 11 is a graph that shows collisions occured in crossroad scenario. As

simulation runs with increased number of agents, the number of collision is increase as well. However

Autodesk Gameware Navigation used in Autodesk Stingray produce less collisions that Unity Navigation.

There are 16.49% less collisions occured in crossroad scenario for Autodesk Gameware Navigation

compared to Unity Navigation, also 23.93% less for narrow passage scenario.

Fig 10. Collision Occured in Crossroad Scenario

Fig 11. Collision Occured in Crossroad Scenario

Collision occured because the simulation agents fail to move safely as calculated by the navigation

system. Due to the fact each navigation system use different approach in predict and avoid collision, such

result is as expected. More collision lead to more time required for all agents to reach their destination

thus end the scenario. Simulation in Unity3D produce more collision hence the simulation time.

Compared to simulation in Autodesk Stingray as shown on figure 12 and 13, Unity3D need 8.2% more

time to finish the crossroad scenario, and 17.83% for the narrowpassage scenario.

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

67

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Fig 12. Collision Occured in Narrowpassage Scenario

Fig 13. Collision Occured in Crossroad Scenario

5. Conclusion

Our research show how different navigation system used by two game engine may lead to different

perfomance in scenario for crowd simulation. Autodesk Gameware navigation used in Autodesk Stingray

perform better than Unity Navigation used in Unity3D. Agents navigation in Autodesk Stingray produce

16.49% less collisions and 8.2% less time to finish the crossroad scenario compared to Unity3D. As for

the narrowpassage scenario, Autodesk Stingray produce 23.93% less collisions and 17.83% less time

compared to Unity3D.

6. References

[1] S. H. M. Hashim and N. Mat Diah, "Game engine framework for Non-Programming background," 2015 IEEE

Conference on Open Systems (ICOS), Bandar Melaka, 2015, pp. 18-21.

[2] B. Cowan and B. Kapralos, "A Survey of Frameworks and Game Engines for Serious Game Development,"

2014 IEEE 14th International Conference on Advanced Learning Technologies, Athens, 2014, pp. 662-664.

[3] Z. Ali and M. Usman, "A framework for game engine selection for gamification and serious games," 2016

Future Technologies Conference (FTC), San Francisco, CA, 2016, pp. 1199-1207.

[4] P. Petridis, I. Dunwell, S. de Freitas and D. Panzoli, "An Engine Selection Methodology for High Fidelity

Serious Games," 2010 Second International Conference on Games and Virtual Worlds for Serious Applications,

Braga, 2010, pp. 27-34.

[5] J. van den Berg, S. Pati, J. Sewall, D. Manocha, and M. Lin, Interactive Navigation Of Multiple Agents in

Crowded Environment. USA: University of North California, 2008.

[6] J. van den Berg, M. Lin, and D. Manocha, Reciprocal Velocity Obstacles For Real-time Multiagent Navigation.

USA: University of North California, 2008.

[7] Unity Technologies, Inner Workings of the Navigation System, Unity3D Online Documentation, accessed 8

January 2020, https://docs.unity3d.com/Manual/Navigation.html.

Jurnal Mantik
Volume 4 Number 1 May 2020, pp. 61-68 E-ISSN 2685-4236
https://iocscience.org/ejournal/index.php/mantik/index

68

Accredited “Rank 4”(Sinta 4), DIKTI, No. 36/E/KPT/2019, December 13th 2019.

 Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

[8] Autodesk Inc, Autodesk Gameware Navigation, Autodesk Online Documentation, accessed 28 January 2020,

http://help.autodesk.com/view/GWNAV/2016/ENU/

[9] Banoriya D., Purohit R., Dwivedi R.K. (2015). Modern Trends in Rapid Prototyping for Biomedical

Applications. Materials Today: Proceedings, 2(4-5): 3409-3418.

