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Measurements, Units, Dimension

• Measurements

• Quantities

• SI units

• Unit conversion

• Dimension



Measurements
• To be quantitative in Physics requires measurements
• How tall is Ming Yao? How about 

his weight?
– Height: 2.29 m (7 ft 6 in)
– Weight: 141 kg (310 lb)

• Number   +      Unit  

– “thickness is 10.” has no physical meaning
– Both numbers and units necessary for

any meaningful physical quantities



Type Quantities
• Many things can be measured: distance, speed, 

energy, time, force ……
• These are related to one another: speed = distance / 

time
• Choose three basic quantities (DIMENSIONS):

– LENGTH
– MASS
– TIME

• Define other units in terms of these.



SI Unit for 3 Basic Quantities
• Units in physics equations must always be consistent. 

Converting units is a matter of multiplying the given 
quantity by a fraction, with one unit in the numerator 
and its equivalent in the other units in the denominator, 
arranged so the unwanted units in the given quantity 
are cancelled out in favor of the desired units.

• In 1960, standards bodies control and define Système
Internationale (SI) unit for 3 main basic quantities as
– LENGTH: Meter
– MASS: Kilogram
– TIME: Second



Fundamental Quantities and SI Units
Length meter m

Mass kilogram kg

Time second s

Electric Current ampere A

Thermodynamic Temperature kelvin K

Luminous Intensity candela cd

Amount of Substance mole mol



SI Length Unit: Meter
• French Revolution Definition, 1792
• 1 Meter = XY/10,000,000
• 1 Meter = about 3.28 ft
• 1 km = 1000 m, 1 cm = 1/100 m, 1 

mm = 1/1000 m
• Current Definition of 1 Meter: the 

distance traveled by light in 
vacuum during a time of 
1/299,792,458 second.



Values of Length



SI Time Unit: Second

• 1 Second is defined in terms of an “atomic clock”– time taken 
for 9,192,631,770 oscillations of the light emitted by a 133Cs 
atom.

• Defining units precisely is a science (important, for example, 
for GPS):
– This clock will neither gain nor lose a second in 20 million years.



Values of Time Intervals



SI Mass Unit: Kilogram
• 1 Kilogram – the mass of a              

specific platinum-iridium alloy kept at 
International Bureau of Weights and 
Measures near Paris. 

• Copies are kept in many other countries.

• Yao Ming is 141 kg, equivalent to weight 
of 141 pieces of the alloy cylinder.



Values of Masses



Prefixes for SI Units
10x Prefix Symbol

x=18 exa E
15 peta P
12 tera T
9 giga G
6 mega M
3 kilo k
2 hecto h
1 deca da

 3,000 m = 3  1,000 m
= 3  103 m = 3 km

 1,000,000,000 = 109 = 1G
 1,000,000 = 106 = 1M
 1,000 = 103 = 1k
 141 kg = 141,000 g
 1 GB = 1,000 MB
 4 MB = 4,000 KB

If you are rusty with scientific notation,
see appendix B.1 of the text 



10x Prefix Symbol
x=-1 deci d
-2 centi c
-3 milli m
-6 micro µ
-9 nano n
-12 pico p
-15 femto f
-18 atto a

Prefixes for SI Units

 0.003 s = 3  0.001 s
= 3  10-3 s = 3 ms

 0.01 = 10-2 = centi
 0.001 = 10-3 = milli
 0.000 001 = 10-6 = micro
 0.000 000 001 = 10-9 = nano
 0.000 000 000 001 = 10-12

= pico = p
 1 nm = ? m = ? cm
 3 cm = ? m = ? mm



Derived Quantities and Units
• Multiply and divide units just like numbers
• Derived quantities: area, speed, volume, density ……

– Area = Length  Length SI unit for area = m2

– Volume = Length  Length  Length       SI unit for volume = m3

– Speed = Length / time SI unit for speed = m/s
– Density = Mass / Volume SI unit for density = kg/m3

• In 2008 Olympic Game, Usain Bolt sets world record at 9.69 s 
in Men’s 100 m Final. What is his average speed ?

m/s 10.32
s

m

9.69

100

s 9.69

m 100
speed 



Other Unit System
• U.S. customary system: foot, slug, second
• Cgs system: cm, gram, second
• We will use SI units in this course, but it is useful to know 

conversions between systems.
– 1 mile = 1609 m = 1.609 km        1 ft = 0.3048 m = 30.48 cm
– 1 m = 39.37 in. = 3.281 ft 1 in. = 0.0254 m = 2.54 cm
– 1 lb = 0.465 kg 1 oz = 28.35 g 1 slug = 14.59 kg
– 1 day = 24 hours = 24 * 60 minutes = 24 * 60 * 60 seconds 

– More can be found in Appendices A & D in your textbook.



Unit Conversion
Example: On the garden state parkway of Jakarta, a car  is traveling at a 
speed of 38.0 m/s. Is the driver exceeding the speed limit (if the limit is 80 
mph)?
Since the speed limit is in miles/hour (mph), we need to convert the units 
of m/s to mph.  Take it in two steps.
• Step 1: Convert m to miles.  Since 1 mile = 1609 m, we have two 

possible conversion factors, 1 mile/1609 m = 6.215x10-4 mile/m, or 
1609 m/1 mile = 1609 m/mile.  What are the units of these conversion 
factors? Since we want to convert m to mile, we want the m units to 
cancel => multiply by first factor: 

• Step 2: Convert second (s) to hour (hr).  Since 1 hr = 3600 s, again we 
could have 1 hr/3600 s = 2.778x10-4 hr/s, or 3600 s/hr.  Since we want 
to convert s to hr, we want the s units to cancel =>

2 mile 3600 s
38.0 m/s 2.36 10 85.0 mile/hr = 85.0 mph

s hr
-   



• “Dimension” is characteristic of the object, condition, or 
event and is described quantitatively in terms of defined 
“units”.

• A physical quantity is equal to the product of two elements:
– A quality or dimension
– A quantity expressed in terms of “units”

• Physical things are measurable in terms of three primitive 
qualities (Maxwell 1871)

• Mass (M)
• Length (L)
• Time (T)

Dimension



• Quantities have dimensions:
– Length – L, Mass – M, and Time - T

• Quantities have units: Length – m, Mass – kg, Time – s

• To refer to the dimension of a quantity, use square brackets, 
e.g. [F] means dimensions of force.

• Temperature, electrical charge, chemical quantity, and 
luminosity were added as “primitives” some years later 
(after Maxwell 1871).

Quantity Area Volume Speed Acceleration

Dimension [A] = L2 [V] = L3 [v] = L/T [a] = L/T2

SI Units m2 m3 m/s m/s2



Dimensional Analysis
• Necessary either to derive a math expression, or equation or to 

check its correctness.
• Quantities can be added/subtracted only if they have the same 

dimensions.
• The terms of both sides of an equation must have the same 

dimensions.
• The three fundamental physical dimensions of mechanics are 

length, mass and time, which in the SI system have the units 
meter (m), kilogram (kg), and second (s), respectively

• The method of dimensional analysis is very powerful in solving 
physics problems.

• Please analyze these !
– a, b, and c have units of meters, s = a, what is [s] ?
– a, b, and c have units of meters, s = a + b, what is [s] ? 
– a, b, and c have units of meters, s = (2a + b)b, what is [s] ?
– a, b, and c have units of meters, s = (a + b)3/c, what is [s] ?
– a, b, and c have units of meters, s = (3a + 4b)1/2/9c2, what is [s] ?
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Vectors
• Vectors and scalars

• Describe vectors geometrically

• Components of vectors

• Unit vectors

• Vectors addition and subtraction

• Scalar product of two vectors

• Cross product of two vectors

• The Properties of Vector Products



Vector vs. Scalar Review

• All physical quantities encountered in this text will be either a scalar or a 
vector

• A vector quantity has both magnitude (value + unit) and direction
• A scalar is completely specified by only a magnitude (value + unit)

A library is located 0.5 mi from you. 
Can you point where exactly it is?

You also 
need to 
know the 
direction in 
which you 
should 
walk to the 
library!



Vector and Scalar Quantities

 Vectors
 Displacement
 Velocity (magnitude and 

direction!)
 Acceleration
 Force
 Momentum

 Scalars:
 Distance
 Speed (magnitude of 

velocity)
 Temperature
 Mass
 Energy
 Time

To describe a vector we need more information than to describe a 
scalar! Therefore vectors are more complex!



Important Notation
 To describe vectors we will use:

 The bold font: Vector A is A
 Or an arrow above the vector: 
 In the pictures, we will always show 

vectors as arrows
 Arrows point the direction
 To describe the magnitude of a 

vector we will use absolute value 
sign:       or just A, 

 Magnitude is always positive, the 
magnitude of a vector is equal to 
the length of a vector.

A


A




Properties of Vectors
• Equality of Two Vectors

– Two vectors are equal if they have the 
same magnitude and the same direction

• Movement of vectors in a diagram
– Any vector can be moved parallel to itself 

without being affected

A


 Negative Vectors
 Two vectors are negative if they have the same 

magnitude but are 180° apart (opposite directions)

 ; 0    A B A A
   

B




Adding Vectors

• When adding vectors, their directions must 
be taken into account

• Units must be the same 
• Geometric Methods

– Use scale drawings
• Algebraic Methods

– More convenient



Adding Vectors Geometrically 
(Triangle Method)

• Draw the first vector with the 
appropriate length and in the 
direction specified, with respect to a 
coordinate system

• Draw the next vector with the 
appropriate length and in the 
direction specified, with respect to a 
coordinate system whose origin is 
the end of vector    and parallel to 
the coordinate system used for    : 
“tip-to-tail”.

• The resultant is drawn from the 
origin of    to the end of the last 
vector

A


B


A


BA




A


B


A


A


B




Adding Vectors Graphically 
• When you have many 

vectors, just keep 
repeating the process 
until all are included

• The resultant is still 
drawn from the origin 
of the first vector to the 
end of the last vector

BA




BA




CBA






Adding Vectors Geometrically 
(Polygon Method)

• Draw the first vector with the 
appropriate length and in the 
direction specified, with respect 
to a coordinate system

• Draw the next vector with the 
appropriate length and in the 
direction specified, with respect 
to the same coordinate system

• Draw a parallelogram
• The resultant is drawn as a 

diagonal from the origin
A


B


A


BA




B


ABBA






Vector Subtraction

• Special case of vector addition
– Add the negative of the 

subtracted vector

• Continue with standard vector 
addition procedure

    A B A B
   

A


B


BA



B






Describing Vectors Algebraically
Vectors: Described by the number, units and direction!

Vectors: Can be described by their magnitude and direction. 
For example: Your displacement is 1.5 m at an angle of 250.

Can be described by components? For example: your 
displacement is 1.36 m in the positive x direction and 0.634 m
in the positive y direction.



Components of a Vector
• A component is a part
• It is useful to use rectangular 

components These are the 
projections of the vector 
along the x- and y-axes

q

qcosa

90qcos(90 )

sin

a

a

q
q






Components of a Vector
• The x-component of a vector is 

the projection along the x-axis

• The y-component of a vector is 
the projection along the y-axis

• Then, 
q

cos xA

A
q  cosxA A q

sin
yA

A
q  sinyA A q

yx AAA




x y A A A
  



Components of a Vector

• The previous equations are valid only if θ is measured 
with respect to the x-axis

• The components can be positive or negative and will 
have the same units as the original vector

θ

θ=0, Ax=A>0, Ay=0
θ=45°, Ax=A cos 45°>0, Ay=A sin 45°>0
θ=90°, Ax=0, Ay=A>0

θ=135°, Ax=A cos 135°<0, Ay=A sin 135°>0

θ=180°, Ax=A<0, Ay=0

θ=225°, Ax=A cos 225°<0, Ay=A sin 225°<0
θ=270°, Ax=0, Ay=A<0

θ=315°, Ax=A cos 315°<0, Ay=A sin 315°<0

Ax > 0
Ay > 0

Ax < 0
Ay > 0

Ax < 0
Ay < 0

Ax > 0
Ay < 0



More About Components
• The components are the legs of the right triangle whose 

hypotenuse is A
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Unit Vectors
• Components of a vector are vectors

• Unit vectors i-hat, j-hat, k-hat

• Unit vectors used to specify direction
• Unit vectors have a magnitude of 1
• Then

q

zk ˆxi ˆ yj ˆ

y

x

z

ij

k

yx AAA




jAiAA yx
ˆˆ 



Magnitude + Sign Unit vector



Adding Vectors Algebraically
• Consider two vectors

• Then

• If
• so x y A A A

  

jBAiBA

jBiBjAiABA

yyxx

yxyx

ˆ)(ˆ)(

)ˆˆ()ˆˆ(






jBiBB yx
ˆˆ 


jAiAA yx
ˆˆ 



xxx BAC  yyy BAC 
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Example : Operations with Vectors

 Vector A is described algebraically as (-3, 5), while 
vector B is (4, -2). Find the value of magnitude and
direction of the sum (C) of the vectors A and B.

jijiBAC ˆ3ˆ1ˆ)25(ˆ)43( 


jiB ˆ2ˆ4 


jiA ˆ5ˆ3 


1xC 3yC

16.3)31()( 2/1222/122  yx CCC

56.713tantan 11  

x

y

C

C
q



Law of Cosines

This will be used often in balancing forces

c

ba

g
b

a

180a b g   

2 2 2 2 cosa b c bc a  
2 2 2 2 cosb a c ac b  

2 2 2 2 cosc a b ab g  



Law of Sines

Again, used throughout this and other classes
Start with the same triangle:

ba

g

c

b
a sin sin sin

a b c

a b g
 



300 lb
200 lb

45o25o

Determine by trigonometry 
the magnitude and direction 
of the resultant of the two 
forces shown

Note: resultant of two 
forces is the sum of the 
two vectors

Example



Scalar (Dot) Product of Two Vectors
• The scalar product of 

two vectors is  written 
as 
– It is also called the dot 

product

•
– q  is the angle between A

and B

• Applied to work, this 
means

A B
 

 A B cos q A B
 

cosW F r q    F r
 



Dot Product
• The dot product says something 

about how parallel two vectors 
are.

• The dot product (scalar product) 
of two vectors can be thought of 
as the projection of one onto the 
direction of the other.

• Components
A
xAAiA

ABBA
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Projection of a Vector: Dot Product
• The dot product says something 

about how parallel two vectors 
are.

• The dot product (scalar product) 
of two vectors can be thought of 
as the projection of one onto the 
direction of the other.

• Components

A


B


zzyyxx BABABABA 


p/2

Projection is zero

xAAiA
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Derivation
• How do we show that                                     ?
• Start with

• Then

• But 

• So

zzyyxx BABABABA 
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Scalar Product
• The vectors
• Determine the scalar product

• Find the angle θ between these two vectors

 ˆ2ˆ and  ˆ3ˆ2 jiBjiA 


? BA
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The Cross Product
If 

The cross product of a and b is

Notice that the cross product a  b of two vectors a 
and b, unlike the dot product, is a vector. For this 
reason it is also called the vector product. Note that 
a  b is defined only when a and b are 
three-dimensional vectors.



Determinant of Order 2

• In order to make Definition 4 easier to remember, 
we use the notation of determinants.

• A determinant of order 2 is defined by

• For example,



Determinant of Order 3

• A determinant of order 3 can be defined in terms of 
second-order determinants as follows:

• Observe that each term on the right side of Equation 5 
involves a number ai in the first row of the determinant, 
and ai is multiplied by the second-order determinant 
obtained from the left side by deleting the row and column 
in which ai appears.



Example Order 3

Notice also the minus sign in the second term. For 
example,

= 1(0 – 4) – 2(6 + 5) + (–1)(12 – 0)

= –38



The Cross Product: Geometric 
Description

• We constructed the cross 
product a  b so that it would be 
perpendicular to both a and b. 
This is one of the most important 
properties of a cross product.

• If a and b are represented by 
directed line segments with the 
same initial point (as in Figure), 
then the cross product a  b
points in a direction 
perpendicular to the plane 
through a and b.



• It turns out that the direction of a  b is given by the right-
hand rule: If the fingers of your right hand curl in the direction 
of a rotation (through an angle less than 180) from to a to b, 
then your thumb points in the direction of a  b.

• Now that we know the direction of the vector a  b, the 
remaining thing we need to complete its geometric 
description is its length | a  b |. This is given by the following 
theorem.

| a  b |= |a| |b| sin θ

• Since a vector is completely determined by its magnitude and 
direction, we can now say that a  b is the vector that is 
perpendicular to both a and b, whose orientation is 
determined by the right-hand rule, and whose length is 
| a | | b |sin q. In fact, that is exactly how physicists define a 
b.



Characteristic of Cross Vector

• The cross product is not commutative. For example

i  (i  j) = i  k = –j , whereas (i  i)  j = 0  j = 0

• The associative law for multiplication does not usually  
hold; that is, in general,

(a  b)  c  a  (b  c)

• However, some of the usual laws of algebra do hold for 
cross products.



The Properties of Vector Products



Mixed Triple Product of Three Vectors
• Mixed triple product of three vectors,

  resultscalar  QPS


• The six mixed triple products formed from S, P, and 
Q have equal magnitudes but not the same sign,

     
     SPQQSPPQS

PSQSQPQPS
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• Evaluating the mixed triple product,
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Motion Along a Straight Line

• Motion
• Position and displacement
• Average velocity and average speed
• Instantaneous velocity and speed
• Acceleration 
• Derivation of the equation
• Free fall acceleration



Motion
• Everything moves! Motion is 

one of the main topics in 
Physics I

• In the spirit of taking things 
apart for study, then putting 
them back together, we will 
first consider only motion 
along a straight line.

• Simplification: Consider a 
moving object as a particle, 
i.e. it moves like a particle—
a “point object”



4 Basic Quantities in Kinematics



One Dimensional Position x
• Motion can be defined as the change of position over time.
• How can we represent position along a straight line?
• Position definition:

– Defines a starting point: origin (x = 0), x relative to origin
– Direction: positive (right or up), negative (left or down)
– It depends on time: t = 0 (start clock), x(t=0) does not have to be 

zero.

• Position has units of [Length]: meters.

x = + 2.5 m

x = - 3 m



Vector and Scalar
• A vector quantity  is characterized by having both a 

magnitude and a direction.
– Displacement, Velocity, Acceleration, Force …
– Denoted in boldface type               or with an arrow over the 

top                . 

• A scalar quantity has magnitude, but no direction.
– Distance, Mass, Temperature, Time …

• For motion along a straight line, the direction is represented 
simply by + and – signs.
– + sign: Right or Up.
– - sign: Left or Down.

• 1-D motion can be thought of as a 
component of 2-D and 3-D motions.

,   ,   ...v a F
  ,   ,   ...v a F



Quantities in Motion
• Any motion involves three concepts

– Displacement
– Velocity
– Acceleration

• These concepts can be used to study objects in 
motion.



Displacement
• Displacement is a change of position in time.
• Displacement: 

– f stands for final and i stands for initial.
• It is a vector quantity.
• It has both magnitude and direction: + or - sign
• It has units of [length]: meters.

)()( iiff txtxx -

x1 (t1) = + 2.5 m
x2 (t2) = - 2.0 m
Δx = -2.0 m - 2.5 m = -4.5 m
x1 (t1) = - 3.0 m
x2 (t2) = + 1.0 m
Δx = +1.0 m + 3.0 m = +4.0 m



Distance and Position-time graph

• Displacement in space
– From A to B: Δx = xB – xA = 52 m – 30 m = 22 m
– From A to C: Δx = xc – xA = 38 m – 30 m = 8 m

• Distance is the length of a path followed by a particle
– from A to B: d = |xB – xA| = |52 m – 30 m| = 22 m
– from A to C: d = |xB – xA|+ |xC – xB| = 22 m + |38 m – 52 m| = 36 m

• Displacement is not Distance.



Velocity
• Velocity is the rate of change of position.
• Velocity is a vector quantity.
• Velocity has both magnitude and direction.
• Velocity has a unit of [length/time]: meter/second.
• We will be concerned with three quantities, defined as:

– Average velocity

– Average speed

– Instantaneous 
velocity

avg

total distance
s

t




0
lim

t

x dx
v

t dt 


 



t

xx

t

x
v if

avg 

-







displacement

distance

displacement



Average Velocity
• Average velocity                                   

is the slope of the line segment 
between end points on a graph.

• Dimensions: length/time (L/T) [m/s].
• SI unit: m/s.
• It is a vector (i.e. is signed), and 

displacement direction sets its sign.

t

xx

t

x
v if

avg 

-









Average Speed
• Average speed

• Dimension: length/time, [m/s].
• Scalar: No direction involved.
• Not necessarily close to Vavg:

– Savg = (6m + 6m)/(3s+3s) = 2 m/s
– Vavg = (0 m)/(3s+3s) = 0 m/s

avg

total distance
s

t






Graphical Interpretation of Velocity
• Velocity can be determined 

from a position-time graph
• Average velocity equals the 

slope of the line joining the 
initial and final positions. It is a 
vector quantity.

• An object moving with a 
constant velocity will have a 
graph that is a straight line.



Instantaneous Velocity
• Instantaneous means “at some given instant”. The 

instantaneous velocity indicates what is happening at every 
point of time.

• Limiting process:
– Chords approach the tangent as Δt => 0
– Slope measure rate of change of position

• Instantaneous velocity:
• It is a vector quantity.
• Dimension: length/time (L/T), [m/s].
• It is the slope of the tangent line to x(t).
• Instantaneous velocity v(t) is a function of time.

0
lim

t

x dx
v

t dt 


 





• Uniform velocity is the special case of constant velocity
• In this case, instantaneous velocities are always the same, 

all the instantaneous velocities will also equal the average 
velocity

• Begin with                       then

Uniform Velocity

t

xx

t

x
v if

x 
-





 tvxx xif +

x
x(t)

t0
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v

v(t)

t0
tf

vx

ti

Note: we are plotting 
velocity vs. time



Average Acceleration
• Changing velocity (non-uniform) means an acceleration is 

present.
• Acceleration is the rate of change of velocity.
• Acceleration is a vector quantity.
• Acceleration has both magnitude and direction.
• Acceleration has a dimensions of length/time2: [m/s2].
• Definition:

– Average acceleration

– Instantaneous acceleration

if

if
avg tt
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t
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Average Acceleration
• Average acceleration

• Velocity as a function of time

• It is tempting to call a negative acceleration a “deceleration,” but note:
– When the sign of the velocity and the acceleration are the same (either positive or 

negative), then the speed is increasing
– When the sign of the velocity and the acceleration are in the opposite directions, 

the speed is decreasing

• Average acceleration is the slope of the line connecting the initial and 
final velocities on a velocity-time graph

if

if
avg tt

vv

t

v
a

-
-







tavtv avgif +)(

Note: we are plotting 
velocity vs. time



Instantaneous and Uniform Acceleration

• The limit of the average acceleration as the time interval 
goes to zero

• When the instantaneous accelerations are always the same, 
the acceleration will be uniform. The instantaneous 
acceleration will be equal to the average acceleration

• Instantaneous acceleration is the 
slope of the tangent to the curve 
of the velocity-time graph

2
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0
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• Velocity and acceleration are in the 
same direction

• Acceleration is uniform (blue arrows 
maintain the same length)

• Velocity is increasing (red arrows are 
getting longer)

• Positive velocity and positive 
acceleration

Relationship between Acceleration and Velocity 
(First Stage)

atvtv if +)(
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• Uniform velocity (shown by red arrows 
maintaining the same size)

• Acceleration equals zero

Relationship between Acceleration and 
Velocity (Second Stage)
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• Acceleration and velocity are in opposite 
directions

• Acceleration is uniform (blue arrows 
maintain the same length)

• Velocity is decreasing (red arrows are 
getting shorter)

• Velocity is positive and acceleration is 
negative

Relationship between Acceleration and Velocity 
(Third Stage)



Kinematic Variables: x, v, a
• Position is a function of time:
• Velocity is the rate of change of position.
• Acceleration is the rate of change of velocity.

• Position               Velocity               Acceleration
• Graphical relationship between x, v, and a

This same plot can apply to an elevator that is initially 
stationary, then moves upward, and then stops. Plot v
and a as a function of time.
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Special Case: Motion with Uniform Acceleration 
(our typical case)

• Acceleration is a constant
• Kinematic Equations (which we 

will derive in a moment)
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Derivation of the Equation (1)
• Given initial conditions:

– a(t) = constant = a, v(t = 0) = v0, x(t = 0) = x0

• Start with definition of average acceleration:

• We immediately get the first equation

• Shows velocity as a function of acceleration and time
• Use when you don’t know and aren’t asked to find the 

displacement
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• Given initial conditions:
– a(t) = constant = a, v(t = 0) = v0, x(t = 0) = x0

• Start with definition of average velocity:

• Since velocity changes at a constant rate, we have

• Gives displacement as a function of velocity and time
• Use when you don’t know and aren’t asked for the acceleration

Derivation of the Equation (2)
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• Given initial conditions:
– a(t) = constant = a, v(t = 0) = v0, x(t = 0) = x0

• Start with the two just-derived equations:

• We have

• Gives displacement as a function of all three quantities: time, initial 
velocity and acceleration

• Use when you don’t know and aren’t asked to find the final velocity

Derivation of the Equation (3)
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• Given initial conditions:
– a(t) = constant = a, v(t = 0) = v0, x(t = 0) = x0

• Rearrange the definition of average acceleration
, to find the time

• Use it to eliminate t in the second equation:
, rearrange to get

• Gives velocity as a function of acceleration and displacement
• Use when you don’t know and aren’t asked for the time

Derivation of the Equation (4)
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Problem-Solving Hints
• Read the problem
• Draw a diagram

– Choose a coordinate system, label initial and final points, indicate a 
positive direction for velocities and accelerations

• Label all quantities, be sure all the units are consistent
– Convert if necessary

• Choose the appropriate kinematic equation
• Solve for the unknowns

– You may have to solve two equations for two unknowns
• Check your results xavv + 22

0
2

atvv + 0

2
2
1

0 attvx +



Example
• An airplane has a lift-off speed of 30 m/s after 

a take-off run of 300 m, what minimum 
constant acceleration?

• What is the corresponding take-off time?
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Free Fall Acceleration
• Earth gravity provides a constant 

acceleration. Most important case of 
constant acceleration.

• Free-fall acceleration is independent of 
mass.

• Magnitude: |a| = g = 9.8 m/s2

• Direction: always downward, so ag is 
negative if we define “up” as positive,
a = -g = -9.8 m/s2

• Try to pick origin so that  xi = 0

y



A stone is thrown from the top of a building with an initial 
velocity of 20.0 m/s straight upward, at an initial height of 
50.0 m above the ground. The stone just misses the edge of 
the roof on the its way down. Determine 

• (a) the time needed for the stone to reach its maximum 
height.

• (b) the maximum height.
• (c) the time needed for the stone to return to the height 

from which it was thrown and the velocity of the stone at 
that instant.

• (d) the time needed for the stone to reach the ground
• (e) the velocity and position of the stone at t = 5.00s

Free Fall for Rookie



Review
• This is the simplest type of motion
• It lays the groundwork for more complex motion
• Kinematic variables in one dimension

– Position x(t) m L
– Velocity v(t) m/s L/T
– Acceleration a(t) m/s2 L/T2

– All depend on time
– All are vectors: magnitude and direction vector:

• Equations for motion with constant acceleration:    missing quantities
– x – x0

– v

– t

– a
– v0
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Motion in Two Dimensions

• Reminder of vectors and vector algebra
• Displacement and position in 2-D
• Average and instantaneous velocity in 2-D
• Average and instantaneous acceleration in 2-D
• Projectile motion
• Uniform circular motion
• Relative velocity*



Vector and its components
• The components are the 

legs of the right triangle 
whose hypotenuse is A
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 Which diagram can represent                    ?

A)                                     B)

C)                                     D)

Vector Algebra
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• Kinematic variables in one dimension
– Position: x(t) m
– Velocity: v(t) m/s
– Acceleration: a(t) m/s2

• Kinematic variables in three dimensions
– Position: m
– Velocity: m/s
– Acceleration: m/s2

• All are vectors: have direction and 
magnitudes

Motion in two dimensions
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 In one dimension

 In two dimensions
 Position: the position of an object is 

described by its position vector   
--always points to particle from origin.

 Displacement:

x1 (t1) = - 3.0 m, x2 (t2) = + 1.0 m
Δx = +1.0 m + 3.0 m = +4.0 m

Position and Displacement
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 Average velocity

 Instantaneous velocity

 v is tangent to the path in x-y graph;

Average & Instantaneous Velocity
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Motion of a Turtle

A turtle starts at the origin and moves with the speed of v0=10 cm/s in 
the direction of 25° to the horizontal. 

(a) Find the coordinates of a turtle 10 seconds later.  
(b) How far did the turtle walk in 10 seconds?



Motion of a Turtle

Notice, you can solve the 
equations independently for the 
horizontal (x) and vertical (y) 
components of motion and then 
combine them!

yx vvv


0

0 0 cos 25 9.06 cm/sxv v 

 X components:

 Y components:

 Distance from the origin:

0 90.6 cmxx v t  

0 0 sin 25 4.23 cm/syv v 
0 42.3 cmyy v t  

cm 0.10022  yxd



 Average acceleration

 Instantaneous acceleration

 The magnitude of the velocity (the speed) can change
 The direction of the velocity can change, even though the 

magnitude is constant
 Both the magnitude and the direction can change

Average & Instantaneous Acceleration
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Motion in two dimensions

tavv


 0

• Motions in each dimension are independent components
• Constant acceleration equations

• Constant acceleration equations hold in each dimension

– t = 0 beginning of the process;
– where ax and ay are constant;
– Initial velocity initial displacement ;
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 Define coordinate system. Make sketch showing axes, origin.
 List known quantities. Find v0x , v0y , ax , ay , etc. Show initial 

conditions on sketch.
 List equations of motion  to see which ones to use.
 Time t is the same for x and y directions.

x0 = x(t = 0), y0 = y(t = 0), v0x = vx(t = 0), v0y = vy(t = 0).

 Have an axis point along the direction of a if it is constant.

Hints for solving problems
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 2-D problem and define a coordinate 
system: x- horizontal, y- vertical (up +)

 Try to pick x0 = 0, y0 = 0 at t = 0

 Horizontal motion + Vertical motion
 Horizontal: ax = 0 , constant velocity motion
 Vertical:     ay = -g = -9.8 m/s2, v0y = 0 

 Equations:

Projectile Motion: Origin
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 X and Y motions happen independently, so 
we can treat them separately

 Try to pick x0 = 0, y0 = 0 at t = 0

 Horizontal motion + Vertical motion
 Horizontal: ax = 0 , constant velocity motion
 Vertical:     ay = -g = -9.8 m/s2

 x and y are connected by time t
 y(x) is a parabola

Projectile Motion: Adjustment 
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 2-D problem and define a coordinate system.
 Horizontal: ax = 0 and vertical: ay = -g.

 Try to pick x0 = 0, y0 = 0 at t = 0.

 Velocity initial conditions:
 v0 can have x, y components.
 v0x is constant usually.
 v0y changes continuously.

 Equations:

Projectile Motion: Modification
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 Initial conditions (t = 0): x0 = 0, y0 = 0
v0x = v0 cosθ0  and v0y = v0 sinθ0

 Horizontal motion:

 Vertical motion:

 Parabola;
 θ0 = 0 and θ0 = 90 ?

Trajectory of Projectile Motion
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 Initial conditions (t = 0): x0 = 0, y0 = 0
v0x = v0 cosθ0  and v0x = v0 sinθ0, then

What is R and h ?

Horizontal Vertical
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Projectile Motion at Various Initial Angles

• Complementary values 
of the initial angle result 
in the same range
– The heights will be 

different

• The maximum range 
occurs at a projection 
angle of 45o
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Circular Motion: Observations

 Object moving along a 
curved path with constant 
speed
 Magnitude of velocity: same
 Direction of velocity: changing
 Velocity: changing
 Acceleration is NOT zero!
 Net force acting on the 

object is NOT zero
 “Centripetal force” amFnet






Uniform circular motion

Constant speed, or,
constant magnitude of velocity

Motion along a circle:
Changing direction of velocity



 Centripetal acceleration

 Direction: Centripetal

Uniform Circular Motion
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Uniform Circular Motion
• Velocity:

– Magnitude: constant v
– The direction of the velocity is 

tangent to the circle
• Acceleration:

– Magnitude: 
– directed toward the center of the 

circle of motion
• Period: 

– time interval required for one 
complete revolution of the particle
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 Position

 Average velocity

 Instantaneous velocity

 Acceleration

 are not necessarily same direction.

Review
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 If a particle moves with constant acceleration a, motion 
equations are

 Projectile motion is one type of 2-D motion under constant 
acceleration, where ax = 0, ay = -g.
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Rotational Motion



Rotational Motion

• Angular Position and Radians

• Angular Velocity

• Angular Acceleration

• Rigid Object under Constant Angular Acceleration 

• Angular and Translational Quantities



Angle and Radian
• What is the circumference S ?

• q can be defined as the arc length 
s along a circle divided by the 
radius r:

• q is a pure number, but commonly 
is given the artificial unit, radian
(“rad”)
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r

s
2
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Whenever using rotational equations, you must use angles 
expressed in radians



Conversions
• Comparing degrees and radians

• Converting from degrees to radians

• Converting from radians to degrees 
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Rigid Object
• A rigid object is one that is nondeformable

– The relative locations of all particles making up 
the object remain constant

– All real objects are deformable to some extent, 
but the rigid object model is very useful in many 
situations where the deformation is negligible

• This simplification allows analysis of the 
motion of an extended object



Recall: 1-Dimensional Position x
• What is motion? Change of position over time.
• How can we represent position along a straight line?
• Position definition:

– Defines a starting point: origin (x = 0), x relative to origin
– Direction: positive (right or up), negative (left or down)
– It depends on time: t = 0 (start clock), x(t=0) does not have to be 

zero.

• Position has units of [Length]: meters.

x = + 2.5 m

x = - 3 m



Angular Position
• Axis of rotation is the center of the 

disc
• Choose a fixed reference line
• Point P is at a fixed distance r from the 

origin
• As the particle moves, the only 

coordinate that changes is q
• As the particle moves through q, it 

moves though an arc length s.
• The angle q, measured in radians, is 

called the angular position.



Recall: Displacement
• Displacement is a change of position in time.
• Displacement: 

– f stands for final and i stands for initial.

• It is a vector quantity.
• It has both magnitude and direction: + or - sign
• It has units of [length]: meters.

)()( iiff txtxx 

x1 (t1) = + 2.5 m
x2 (t2) = - 2.0 m
Δx = -2.0 m - 2.5 m = -4.5 m

x1 (t1) = - 3.0 m
x2 (t2) = + 1.0 m
Δx = +1.0 m + 3.0 m = +4.0 m



Angular Displacement
• The angular displacement is 

defined as the angle the 
object rotates through 
during some time interval

• SI unit: radian (rad)
• This is the angle that the 

reference line of length r
sweeps out

f iq q q  



Recall: Velocity
• Velocity is the rate of change of position.
• Velocity is a vector quantity.
• Velocity has both magnitude and direction.
• Velocity has a unit of [length/time]: meter/second.
• Definition:

– Average velocity

– Average speed

– Instantaneous 
velocity
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Average and Instantaneous Angular Speed
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• The average angular speed, ωavg, of a rotating rigid 
object is the ratio of the angular displacement to the 
time interval

• The instantaneous angular speed is defined as the limit 
of the average speed as the time interval approaches 
zero

• SI unit: radian per second (rad/s)
• Angular speed positive if rotating in counterclockwise
• Angular speed will be negative if rotating in clockwise



Recall: Average Acceleration
• Changing velocity (non-uniform) means an acceleration is 

present.
• Acceleration is the rate of change of velocity.
• Acceleration is a vector quantity.
• Acceleration has both magnitude and direction.
• Acceleration has a unit of [length/time2]: m/s2.
• Definition:

– Average acceleration

– Instantaneous acceleration
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Average Angular Acceleration

• The average angular acceleration, a, of an object is defined as 
the ratio of the change in the angular speed to the time it 
takes for the object to undergo the change:
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Instantaneous Angular Acceleration
• The instantaneous angular acceleration is defined as the limit 

of the average angular acceleration as the time goes to 0

• SI Units of angular acceleration: rad/s² 
• Positive angular acceleration is counterclockwise (RH rule –

curl your fingers in the direction of motion).
– if an object rotating counterclockwise is speeding up
– if an object rotating clockwise is slowing down

• Negative angular acceleration is clockwise.
– if an object rotating counterclockwise is slowing down
– if an object rotating clockwise is speeding up
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Rotational Kinematics
• A number of parallels exist between the equations for 

rotational motion and those for linear motion.

• Under constant angular acceleration, we can describe 
the motion of the rigid object using a set of kinematic 
equations
– These are similar to the kinematic equations for linear 

motion
– The rotational equations have the same mathematical 

form as the linear equations
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Analogy with Linear Kinematics
• Start with angular acceleration:
• Integrate once:
• Integrate again:

• Just substitute symbols, and all of the old 
equations apply:
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Comparison Between Rotational and Linear 
Equations



A Rotating Wheel
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srad
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• A wheel rotates with a constant angular acceleration of 
3.5 rad/s2. If the angular speed of the wheel is 2.0 rad/s 
at t = 0

(a) through what angle does the wheel rotate between 
t = 0 and t = 2.0 s? Given your answer in radians and in 

revolutions.
(b) What is the angular speed of the wheel at t = 2.0 s?
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Hints for Problem-Solving
• Similar to the techniques used in linear motion 

problems
– With constant angular acceleration, the techniques are 

much like those with constant linear acceleration
• There are some differences to keep in mind

– For rotational motion, define a rotational axis
• The choice is arbitrary
• Once you make the choice, it must be maintained
• In some problems, the physical situation may suggest a 

natural axis
– The object keeps returning to its original orientation, so 

you can find the number of revolutions made by the body



Relationship Between Angular and Linear 
Quantities

• Every point on the rotating object 
has the same angular motion

• Every point on the rotating object 
does not have the same linear 
motion

• Displacement

• Speeds

• Accelerations
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Speed Comparison
• The linear velocity is always 

tangent to the circular path
– Called the tangential velocity

• The magnitude is defined by 
the tangential speed
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Acceleration Comparison
• The tangential 

acceleration is the 
derivative of the 
tangential velocity
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Speed and Acceleration Note
• All points on the rigid object will have the same 

angular speed, but not the same tangential speed
• All points on the rigid object will have the same 

angular acceleration, but not the same tangential 
acceleration

• The tangential quantities depend on r, and r is not 
the same for all points on the object
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Centripetal Acceleration
• An object traveling in a circle, 

even though it moves with a 
constant speed, will have an 
acceleration
– Therefore, each point on a rotating 

rigid object will experience a 
centripetal acceleration
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Resultant Acceleration
• The tangential component of the acceleration is 

due to changing speed

• The centripetal component of the acceleration is 
due to changing direction

• Total acceleration can be found from these 
components
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Newton’s Laws and Applications

• Newton’s first law

• Newton’s second law

• Newton’s third law

• Applications



Newton’s Laws

I. If no net force acts on a body, then the 
body’s velocity cannot change.

II. The net force on a body is equal to the 
product of the body’s mass and 
acceleration.

III. When two bodies interact, the force on the 
bodies from each other are always equal in 
magnitude and opposite in direction.

Force is a vector
Unit of force in S.I.:



Newton’s First Law
An object at rest tends to stay at rest and an object in motion 
tends to stay in motion with the same speed and in the same 

direction unless acted upon by an unbalanced force

 An object at rest remains at rest as long as no net force acts on it
 An object moving with constant velocity continues to move with 

the same speed and in the same direction (the same velocity) as 
long as no net force acts on it “Keep on doing what it is doing”.

 When forces are balanced, the acceleration of the object is zero
 Object at rest: v = 0 and a = 0
 Object in motion: v  0 and a = 0

 The net force is defined as the vector sum of all the external 
forces exerted on the object. If the net force is zero, forces are 
balanced.  When forces are balances, the object can be stationary, 
or move with constant velocity.



Mass and Inertia

 Every object continues in its state of rest, or uniform 
motion in a straight line, unless it is compelled to change 
that state by unbalanced forces impressed upon it

 Inertia is a property of objects to resist changes is 
motion. Mass is a measure of the amount of inertia.

 Mass is a measure of the resistance of an object to 
changes in its velocity.

 Mass is an inherent property of an object

 Scalar quantity and SI unit: kg



Newton’s Second Law
• The acceleration of an object is directly 

proportional to the net force acting on it 
and inversely proportional to its mass

m
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• Newton’s second law:

• SI unit of force is a Newton (N)

• US Customary unit of force is a pound (lb)
– 1 N = 0.225 lb
– Weight, also measured in lbs. is a force (mass x 

acceleration).  What is the acceleration in that case?

Units of Force

2s

mkg
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amFFnet






More about Newton’s 2nd Law
• You must be certain about which body we are applying it 

to
• Fnet must be the vector sum of all the forces that act on 

that body
• Only forces that act on that body are to be included in the 

vector sum
• Net force component along an

axis gives rise to the acceleration
along that same axis

xxnet maF , yynet maF ,



Gravitational Force

• Gravitational force is a vector
• Expressed by Newton’s Law of Universal Gravitation:

– G – gravitational constant
– M – mass of the Earth
– m – mass of an object
– R – radius of the Earth

• Direction: pointing downward

2R

mM
GFg 



• The magnitude of the gravitational force acting on an object of 
mass m near the Earth’s surface is called the weight w of the 
object: w = mg

• g can also be found from the Law of Universal Gravitation
• Weight has a unit of N

• Weight depends upon location

Weight

mgFw g 

R = 6,400 km

2
2

m/s 8.9
R

M
Gg
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Normal Force
• Force from a solid 

surface which keeps 
object from falling 
through

• Direction: always 
perpendicular to the 
surface

• Magnitude: depends on 
situation

mgFw g 

yg maFN 

mgN 
ymamgN 



Tension Force

• A taut rope exerts forces 
on whatever holds its 
ends

• Direction: always along 
the cord (rope, cable, 
string ……) and away from 
the object

• Magnitude: depend on 
situation

T1

T2
T1 = T = T2



Newton’s Third Law
• If object 1 and object 2 interact, the force 

exerted by object 1 on object 2 is equal in 
magnitude but opposite in direction to the 
force exerted by object 2 on object 1

 Equivalent to saying a single isolated force cannot exist

BonAon FF   






Newton’s Third Law cont.

• F12 may be called the 
action force and F21 the 
reaction force
– Actually, either force can be 

the action or the reaction 
force

• The action and reaction 
forces act on different
objects



Some Action-Reaction Pairs
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Free Body Diagram
• The most important step in 

solving problems involving 
Newton’s Laws is to draw the 
free body diagram

• Be sure to include only the 
forces acting on the object of 
interest

• Include any field forces acting 
on the object

• Do not assume the normal force 
equals the weight

F hand on book

F Earth on book



Hints for Problem-Solving
• Read the problem carefully at least once
• Draw a picture of the system, identify the object of primary interest, and  

indicate forces with arrows
• Label each force in the picture in a way that will bring to mind what 

physical quantity the label stands for (e.g., T for tension)
• Draw a free-body diagram of the object of interest, based on the labeled 

picture. If additional objects are involved, draw separate free-body diagram 
for them

• Choose a convenient coordinate system for each object
• Apply Newton’s second law. The x- and y-components of Newton second 

law should be taken from the vector equation and written individually. This 
often results in two equations and two unknowns

• Solve for the desired unknown quantity, and substitute the numbers

xxnet maF , yynet maF ,



Objects in Equilibrium

• Objects that are either at rest or moving with 
constant velocity are said to be in equilibrium

• Acceleration of an object can be modeled as zero
• Mathematically, the net force acting on the 

object is zero

• Equivalent to the set of component equations 
given by

0F


0a


0 xF 0 yF



Equilibrium, Example 1
• A lamp is suspended from a 

chain of negligible mass
• The forces acting on the lamp 

are
– the downward force of gravity 
– the upward tension in the chain

• Applying equilibrium gives

0 0      y g gF T F T F



Equilibrium, Example 2
• A traffic light weighing 100 N hangs from a vertical cable tied 

to two other cables that are fastened to a support. The upper 
cables make angles of  37° and 53° with the horizontal. Find 
the tension in each of the three cables.

 Conceptualize the traffic light
 Assume cables don’t break
 Nothing is moving

 Categorize as an equilibrium problem
 No movement, so acceleration is zero
 Model as an object in equilibrium

0 xF 0 yF



Equilibrium, Example 2
• Need 2 free-body diagrams

– Apply equilibrium equation to light

– Apply equilibrium equations to knot 

NFT

FTF

g

gy

100

00

3

3





NFT

FTF

g

gy

100

00

3

3





NTTNT

TTT

NTT

TTTF

TTTTF

yyyy

xxx

8033.1             60

33.1
53cos

37cos

010053sin37sin

053cos37cos

121

112

21

321

2121
































Accelerating Objects

• If an object that can be modeled as a particle 
experiences an acceleration, there must be a 
nonzero net force acting on it

• Draw a free-body diagram
• Apply Newton’s Second Law in component form

amF
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Accelerating Objects, Example 1
• A man weighs himself with a scale in an elevator. While the 

elevator is at rest, he measures a weight of 800 N.
– What weight does the scale read if the elevator accelerates upward at 

2.0 m/s2?   a = 2.0 m/s2

– What weight does the scale read if the elevator accelerates downward 
at 2.0 m/s2?  a = - 2.0 m/s2

 Upward:

 Downward:
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Forces
• Dynamics

• Force

• Friction

• Applications

• Dynamics: uniform circular motion



Dynamics

• Describes the relationship between the motion of 
objects in our everyday world and the forces acting 
on them.

• Dynamics analysis
• Language of Dynamics

– Mass: The measure of how difficult it is to change 
object’s velocity (sluggishness or inertia of the object)

– Force: The measure of interaction between two 
objects (pull or push). It is a vector quantity – it has a 
magnitude and direction



Dynamics Analysis 

• Determine the reaction forces on pins, etc. as a
consequence of a specified motion.

• Determine the input force of torque required to
achieve a specified motion, or determine the motion as
a consequence of a specified set of forces and/or
torques.

• Inverse Kinematics: start with the motion and
determine the forces, or

• Direct kinematics: start with the forces and determine
the motion.



Mass

 Every object continues in its state of rest, or 
uniform motion in a straight line, unless it is 
compelled to change that state by unbalanced 
forces impressed upon it

 Mass is a measure of the resistance of an object 
to changes in its velocity.

 Mass is an inherent property of an object

 Scalar quantity and SI unit: kg



Force
• The measure of interaction 

between two objects (pull 
or push)

• Vector quantity: has 
magnitude and direction

• May be a contact force or a 
field force
– Contact forces result from 

physical contact between two 
objects

– Field forces act between 
disconnected objects

• Also called “action at a 
distance”



Types of Force

• Gravitational Force

• Archimedes Force

• Friction Force

• Tension Force

• Spring Force

• Normal Force

• Etc



Vector Nature of Force
• Vector force: has magnitude and direction

• Net Force: a resultant force acting on object

• You must use the rules of vector addition to obtain 
the net force on an object

......321  FFFFFnet
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• Newton’s second law:

• SI unit of force is a Newton (N)

• US Customary unit of force is a pound (lb)
– 1 N = 0.225 lb
– Weight, also measured in lbs. is a force (mass x 

acceleration).  What is the acceleration in that case?

Units of Force

2s

mkg
1N1 

amFFnet






Gravitational Force: mg
• Gravitational force is a vector
• The magnitude of the gravitational force acting on an object of 

mass m near the Earth’s surface is called the weight w of the 
object

w = mg

• Direction: vertically downward

m: Mass
g = 9.8 m/s2

2R

mM
GFg 



Normal Force: N
• Force from a solid 

surface which keeps 
object from falling 
through

• Direction: always 
perpendicular to the 
surface

• Magnitude: not 
necessary to be mg

mgFw g 

yg maFN 

mgN 
ymamgN 



Tension Force: T
• A taut rope exerts forces 

on whatever holds its ends

• Direction: always along the 
cord (rope, cable, 
string ……) and away from 
the object

• Magnitude: depend on 
situation

T1

T2
T1 = T = T2



• When an object is in motion on a surface or through a 
viscous medium, there will be a resistance to the motion. 
This resistance is called the force of friction

• This is due to the interactions between the object and its 
environment

• We will be concerned with two types of frictional force
– Force of static friction: fs

– Force of kinetic friction: fk

• Direction: opposite the direction of the intended motion
– If moving: in direction opposite the velocity
– If stationary, in direction of the vector sum of other forces

Friction ( f )



• Magnitude: Friction is 
proportional to the normal 
force
– Static friction: Ff = F  μsN

– Kinetic friction: Ff = μkN

– μ is the coefficient of friction

• The coefficients of friction 
are nearly independent of 
the area of contact (why?)

Forces of Friction Magnitude



Static Friction
• Static friction acts to keep the 

object from moving

• If increases, so does 

• If decreases, so does 

• ƒs  µs N
Remember, the equality holds 

when the surfaces are on the verge of 
slipping

F


F


ƒs



ƒs





Kinetic Friction
• The force of kinetic 

friction acts when the 
object is in motion

• Although µk can vary 
with speed, we shall 
neglect any such 
variations

• ƒk = µk N



Explore Forces of Friction
• Vary the applied force

• Note the value of the 
frictional force
– Compare the values

• Note what happens 
when the can starts to 
move



Hints for Problem-Solving
• Read the problem carefully at least once
• Draw a picture of the system, identify the object of primary interest, and  

indicate forces with arrows
• Label each force in the picture in a way that will bring to mind what 

physical quantity the label stands for (e.g., T for tension)
• Draw a free-body diagram of the object of interest, based on the labeled 

picture. If additional objects are involved, draw separate free-body diagram 
for them

• Choose a convenient coordinate system for each object
• Apply Newton’s second law. The x- and y-components of Newton second 

law should be taken from the vector equation and written individually. This 
often results in two equations and two unknowns

• Solve for the desired unknown quantity, and substitute the numbers

xxnet maF , yynet maF ,



Objects in Equilibrium
• Objects that are either at rest or moving with 

constant velocity are said to be in equilibrium
• Acceleration of an object can be modeled as zero:   
• Mathematically, the net force acting on the object is 

zero

• Equivalent to the set of component equations given 
by

0F


0a


0 xF 0 yF



 What is the smallest value of the force F such 
that the 2.0-kg block will not slide down the 
wall? The coefficient of static friction between 
the block and the wall is 0.2. ?

Equilibrium, Example 1

F

mg

N

f

F



Accelerating Objects

• If an object that can be modeled as a particle 
experiences an acceleration, there must be a 
nonzero net force acting on it

• Draw a free-body diagram
• Apply Newton’s Second Law in component form

amF
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Inclined Plane
• Suppose a block with a 

mass of 2.50 kg is resting 
on a ramp. If the 
coefficient of static 
friction between the block 
and ramp is 0.350, what 
maximum angle can the 
ramp make with the 
horizontal before the 
block starts to slip down?



• Newton 2nd law:

• Then

• So
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Multiple Objects

• A block of mass m1 on a rough, horizontal surface is connected 
to a ball of mass m2 by a lightweight cord over a lightweight, 
frictionless pulley as shown in figure. A force of magnitude F at 
an angle θ with the horizontal is applied to the block as shown and 
the block slides to the right. The coefficient of kinetic friction 
between the block and surface is μk. Find the magnitude of 
acceleration of the two objects.



Multiple Objects
• m1: 

• m2:
amamgmTF yy 222 
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Uniform circular motion

Constant speed, or,
constant magnitude of velocity

Motion along a circle:
Changing direction of velocity

Dynamics: Uniform Circular Motion



Uniform Circular Motion: Observations

 Object moving along a 
curved path with constant 
speed
 Magnitude of velocity: same
 Direction of velocity: changing
 Velocity : changing
 Acceleration is NOT zero!
 Net force acting on an 

object is NOT zero
 “Centripetal force” amFnet
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 Magnitude:

 Direction: Centripetal

Uniform Circular Motion
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Uniform Circular Motion
• Velocity:

– Magnitude: constant v
– The direction of the velocity is 

tangent to the circle
• Acceleration:

– Magnitude: 
– directed toward the center of the 

circle of motion
• Period: 

– time interval required for one 
complete revolution of the particle
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Centripetal Force
• Acceleration:

– Magnitude: 
– Direction: toward the center of the 

circle of motion
• Force: 

– Start from Newton’s 2nd Law

– Magnitude:

– Direction:  toward the center of the 
circle of motion

r

v
ac

2



r

v
ac

2



amFnet




vac




r

mv
maF cnet

2



netF


netF


netF


vFnet




netc Fa


||



What provides Centripetal Force ?
• Centripetal force is not a new kind of force
• Centripetal force refers to any force that keeps an 

object following a circular path

• Centripetal force is a combination of 
– Gravitational force mg:  downward to the ground
– Normal force N: perpendicular to the surface
– Tension force T: along the cord and away from object
– Static friction force:  fs

max = µsN
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Problem Solving Strategy
• Draw a free body diagram, showing and labeling all the forces 

acting on the object(s)
• Choose a coordinate system that has one axis perpendicular 

to the circular path and the other axis tangent to the circular 
path

• Find the net force toward the center of the circular path (this 
is the force that causes the centripetal acceleration, FC)

• Use Newton’s second law
– The directions will be radial, normal, and tangential
– The acceleration in the radial direction will be the centripetal 

acceleration

• Solve for the unknown(s)



The Conical Pendulum
• A small ball of mass m = 5 kg is suspended from a

string of length L = 5 m.  The ball revolves with 
constant speed v in a horizontal circle of radius r = 2 
m. Find an expression for v and a.

mg

T θ



The Conical Pendulum
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Level Curves
• A 1500 kg car moving on a flat, 

horizontal road negotiates a curve 
as shown. If the radius of the curve 
is 35.0 m and the coefficient of 
static friction between the tires 
and dry pavement is 0.523, find 
the maximum speed the car can 
have and still make the turn 
successfully.

rgv 



Level Curves
• The force of static friction directed toward the center 

of the curve keeps the car moving in a circular path.
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Banked Curves
• A car moving at the designated 

speed can negotiate the curve. 
Such a ramp is usually banked, 
which means that the roadway is 
tilted toward the inside of the 
curve. Suppose the designated 
speed for the ramp is to be 13.4 
m/s and the radius of the curve is 
35.0 m. At what angle should the 
curve be banked?



Banked Curves
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Momentum and Collisions

• Conservation  of Energy

• Momentum 

• Impulse

• Conservation of Momentum

• 1-D Collisions & 2-D Collisions

• The Center of Mass

• Motion of a System of Particles



Conservation of Energy
• D E = D K + D U = 0  if conservative forces are the only forces 

that do work on the system. 
• The total amount of energy in the system is constant.

• D E = D K + D U = -fkd  if friction forces are doing work on the 
system. 

• The total amount of energy in the system is still constant, but 
the change in mechanical energy goes into “internal energy” 
or heat.
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Linear Momentum
• This is a new fundamental quantity, like force, energy.  It is a 

vector quantity (points in same direction as velocity).
• The linear momentum p of an object of mass m moving with 

a velocity v is defined to be the product of the mass and 
velocity:

• The terms momentum and linear momentum will be used 
interchangeably in the text

• Momentum depend on an object’s mass and velocity

vmp






Linear Momentum, cont’d
• Linear momentum is a vector quantity

– Its direction is the same as the direction of the 
velocity

• The dimensions of momentum are ML/T
• The SI units of momentum are kg m / s
• Momentum can be expressed in component form:

px = mvx  py = mvy pz = mvz

mp v
 



Newton’s Law and Momentum
• Newton’s Second Law can be used to relate the 

momentum of an object to the resultant force acting 
on it

• The change in an object’s momentum divided by the 
elapsed time equals the constant net force acting on 
the object
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Impulse
• When a single, constant force acts on the object, 

there is an impulse delivered to the object

is defined as the impulse

– The equality is true even if the force is not constant
– Vector quantity, the direction is the same as the direction 

of the force
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Impulse-Momentum Theorem

• The theorem states that 
the impulse acting on a 
system is equal to the 
change in momentum 
of the system
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Calculating the Change of Momentum
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How Good Are the Bumpers?
 In a crash test, a car of mass 1.5103 kg collides with a wall and 
rebounds as in figure. The initial and final velocities of the car are vi=-15 
m/s and vf = 2.6 m/s, respectively. If the collision lasts for 0.15 s, find 
(a) the impulse delivered to the car due to the collision 
(b) the size and direction of the average force exerted on the car



How Good Are the Bumpers?
 In a crash test, a car of mass 1.5103 kg collides with a wall and 
rebounds as in figure. The initial and final velocities of the car are vi=-15 
m/s and vf = 2.6 m/s, respectively. If the collision lasts for 0.15 s, find 
(a) the impulse delivered to the car due to the collision 
(b) the size and direction of the average force exerted on the car
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Impulse-Momentum Theorem
• A child bounces a 100 g superball on the 

sidewalk. The velocity of the superball changes 
from 10 m/s downward to 10 m/s upward. If the 
contact time with the sidewalk is 0.1s, what is 
the magnitude of the impulse imparted to the 
superball?

(A)  0
(B)  2 kg-m/s
(C)  20 kg-m/s
(D)  200 kg-m/s
(E)  2000 kg-m/s

if vmvmpI


D



Impulse-Momentum Theorem 2
• A child bounces a 100 g superball on the 

sidewalk. The velocity of the superball changes 
from 10 m/s downward to 10 m/s upward. If the 
contact time with the sidewalk is 0.1s, what is 
the magnitude of the force between the 
sidewalk and the superball?
(A)  0
(B)  2 N
(C)  20 N
(D)  200 N
(E)  2000 N
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Conservation of Momentum
• In an isolated and closed system, 

the total momentum of the system 
remains constant in time.
– Isolated system: no external forces
– Closed system: no mass enters or 

leaves
– The linear momentum of each 

colliding body may change
– The total momentum P of the system 

cannot change.



Conservation of Momentum
• Start from impulse-momentum 

theorem

• Since

• Then

• So
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Conservation of Momentum
• When no external forces act on a system consisting of two 

objects that collide with each other, the total momentum of 
the system remains constant in time

• When                 then
• For an isolated system

• Specifically, the total momentum before the collision will 
equal the total momentum after the collision
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The Archer
 An archer stands at rest on frictionless ice and fires a 0.5-kg arrow 
horizontally at 50.0 m/s. The combined mass of the archer and bow is 
60.0 kg. With what velocity does the archer move across the ice after 
firing the arrow?
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Conservation of Momentum

• A 100 kg man and 50 kg woman on ice skates 
stand facing each other. If the woman pushes the 
man backwards so that his final speed is 1 m/s, at 
what speed does she recoil?
(A)  0

(B)  0.5 m/s
(C)  1 m/s
(D)  1.414 m/s
(E)  2 m/s



Types of Collisions
• Momentum is conserved in any collision
• Inelastic collisions: rubber ball and hard ball

– Kinetic energy is not conserved
– Perfectly inelastic collisions occur when the objects stick 

together

• Elastic collisions: billiard ball
– both momentum and kinetic energy are conserved

• Actual collisions
– Most collisions fall between elastic and perfectly inelastic 

collisions



Collisions Summary
• In an elastic collision, both momentum and kinetic energy are 

conserved
• In a non-perfect inelastic collision, momentum is conserved 

but kinetic energy is not. Moreover, the objects do not stick 
together

• In a perfectly inelastic collision, momentum is conserved, 
kinetic energy is not, and the two objects stick together after 
the collision, so their final velocities are the same

• Elastic and perfectly inelastic collisions are limiting cases, 
most actual collisions fall in between these two types 

• Momentum is conserved in all collisions



More about Perfectly Inelastic Collisions

• When two objects stick together 
after the collision, they have 
undergone a perfectly inelastic 
collision

• Conservation of momentum

• Kinetic energy is NOT conserved
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An SUV Versus a Compact
 An SUV with mass 1.80103 kg is travelling eastbound at 

+15.0 m/s, while a compact car with mass 9.00102 kg 
is travelling westbound at -15.0 m/s. The cars collide 
head-on, becoming entangled.

(a) Find the speed of the entangled 
cars after the collision.

(b) Find the change in the velocity 
of each car.

(c) Find the change in the kinetic 
energy of the system consisting 
of both cars.



(a) Find the speed of the entangled 
cars after the collision.
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(b) Find the change in the velocity 
of each car.
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(c) Find the change in the kinetic 
energy of the system consisting 
of both cars.
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More About Elastic Collisions
• Both momentum and kinetic energy 

are conserved

• Typically have two unknowns
• Momentum is a vector quantity

– Direction is important
– Be sure to have the correct signs

• Solve the equations simultaneously
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Elastic Collisions
• A simpler equation can be used in place of the KE equation
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Summary of Types of Collisions
• In an elastic collision, both momentum and kinetic energy are 

conserved

• In an inelastic collision, momentum is conserved but kinetic 
energy is not

• In a perfectly inelastic collision, momentum is conserved, 
kinetic energy is not, and the two objects stick together after 
the collision, so their final velocities are the same
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Conservation of Momentum
• An object of mass m moves to the right with a speed 

v. It collides head-on with an object of mass 3m
moving with speed v/3 in the opposite direction. If 
the two objects stick together, what is the speed of 
the combined object, of mass 4m, after the collision?
(A)  0
(B)  v/2
(C)  v
(D)  2v
(E)  4v



Problem Solving for 1D Collisions, 1
• Coordinates: Set up a 

coordinate axis and define 
the velocities with respect to 
this axis
– It is convenient to make your 

axis coincide with one of the 
initial velocities

• Diagram: In your sketch, draw 
all the velocity vectors and 
label the velocities and the 
masses



Problem Solving for 1D Collisions, 2
• Conservation of Momentum:

Write a general expression 
for the total momentum of 
the system before and after
the collision
– Equate the two total 

momentum expressions
– Fill in the known values
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Problem Solving for 1D Collisions, 3
• Conservation of Energy: If 

the collision is elastic, write a 
second equation for 
conservation of KE, or the 
alternative equation
– This only applies to perfectly 

elastic collisions

• Solve: the resulting 
equations simultaneously
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One-Dimension vs Two-Dimension



Two-Dimensional Collisions
• For a general collision of two objects in two-dimensional 

space, the conservation of momentum principle implies 
that the total momentum of the system in each direction 
is conserved

fyfyiyiy

fxfxixix

vmvmvmvm

vmvmvmvm

22112211

22112211







Two-Dimensional Collisions
• The momentum is conserved in all directions
• Use subscripts for

– Identifying the object
– Indicating initial or final values
– The velocity components

• If the collision is elastic, use conservation of kinetic 
energy as a second equation
– Remember, the simpler equation can only be used for 

one-dimensional situations
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Glancing Collisions

• The “after” velocities have x and y components
• Momentum is conserved in the x direction and in the y 

direction
• Apply conservation of momentum separately to each 

direction
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2-D Collision, example

• Particle 1 is moving at 
velocity        and particle 
2 is at rest

• In the x-direction, the 
initial momentum is 
m1v1i

• In the y-direction, the 
initial momentum is 0

1iv




2-D Collision, example cont
• After the collision, the momentum 

in the x-direction is m1v1f cos q 
m2v2f cos f

• After the collision, the momentum 
in the y-direction is m1v1f sin q 
m2v2f sin f

• If the collision is elastic, apply the 
kinetic energy equation
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Collision at an Intersection
 A car with mass 1.5×103 kg traveling 
east at a speed of 25 m/s collides at 
an intersection with a 2.5×103 kg van 
traveling north at a speed of 20 m/s. 
Find the magnitude and direction of 
the velocity of the wreckage after the 
collision, assuming that the vehicles 
undergo a perfectly inelastic collision 
and assuming that friction between the 
vehicles and the road can be 
neglected.
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The Center of Mass
• How should we define 

the position of the 
moving body ?

• What is y for Ug = mgy ?
• Take the average 

position of mass. Call 
“Center of Mass” (COM 
or CM)



The Center of Mass

• There is a special point in a system or object, 
called the center of mass, that moves as if all 
of the mass of the system is concentrated at 
that point

• The CM of an object or a system is the point, 
where the object or the system can be 
balanced in the uniform gravitational field



The Center of Mass
• The center of mass of any symmetric object lies on an axis of 

symmetry and on any plane of symmetry
– If the object has uniform density

• The CM may reside inside the body, or outside the body



Where is the Center of Mass ?
• The center of mass of particles
• Two bodies in 1 dimension
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Center of Mass for many 
particles in 3D?
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Where is the Center of Mass ?
• Assume m1 = 1 kg, m2 = 3 kg, and x1 = 1 m, x2

= 5 m, where is the center of mass of these 
two objects?
A) xCM = 1 m
B) xCM = 2 m
C) xCM = 3 m
D) xCM = 4 m
E) xCM = 5 m
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Center of Mass for a System of Particles

• Two bodies and one dimension

• General case: n bodies and three dimension

– where M = m1 + m2 + m3 +…



Sample Problem : Three particles of masses m1 = 1.2 kg, 
m2 = 2.5 kg, and m3 = 3.4 kg form an equilateral triangle of 
edge length a = 140 cm. Where is the center of mass of this 
system? (Hint: m1 is at (0,0), m2 is at (140 cm,0), and m3 is 
at (70 cm, 120 cm), as shown in the figure below.)
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Motion of a System of Particles

• Assume the total mass, M, of the system 
remains constant

• We can describe the motion of the system in 
terms of the velocity and acceleration of the 
center of mass of the system

• We can also describe the momentum of the 
system and Newton’s Second Law for the 
system



Velocity and Momentum of a System of 
Particles

• The velocity of the center of mass of a system of 
particles is

• The momentum can be expressed as

• The total linear momentum of the system equals the 
total mass multiplied by the velocity of the center of 
mass
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Acceleration and Force of the Center of 
Mass

• The acceleration of the center of mass can be found 
by differentiating the velocity with respect to time

• The acceleration can be related to a force

• If we sum over all the internal forces, they cancel in 
pairs and the net force on the system is caused only 
by the external forces
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Newton’s Second Law for a System of 
Particles

• Since the only forces are external, the net external 
force equals the total mass of the system multiplied 
by the acceleration of the center of mass:

• The center of mass of a system of particles of 
combined mass M moves like an equivalent particle 
of mass M would move under the influence of the net 
external force on the system
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Rotational Dynamics
• Torque

• Moment of inertia

• Newton 2nd law in rotation

• Rotational work

• Rotational kinetic energy

• Rotational energy conservation

• Rolling motion of a rigid object



Force vs. Torque
• Forces cause accelerations
• What cause angular accelerations ?
• A door is free to rotate about an axis through O
• There are three factors that determine the effectiveness of 

the force in opening the door:
– The magnitude of the force
– The position of the application of the force
– The angle at which the force is applied



Torque Definition
• Torque, t, is the tendency of a force to rotate an 

object about some axis
• Let F be a force acting on an object, and let r be a 

position vector from a rotational center to the 
point of application of the force, with F
perpendicular to r. The magnitude of the torque is 
given by

rFt



Torque Units and Direction
• The SI units of torque are N.m
• Torque is a vector quantity
• Torque magnitude is given by

• Torque will have direction
– If the turning tendency of the force is counterclockwise, the 

torque will be positive
– If the turning tendency is clockwise, the torque will be 

negative

FdrF  t sin



Net Torque
• The force will tend to 

cause a counterclockwise 
rotation about O

• The force will tend to 
cause a clockwise rotation 
about O

• St  t1 + t2  F1d1 – F2d2

• If St  0, starts rotating 
• If St  0, rotation rate does 

not change

1F


2F


 Rate of rotation of an 
object does not change, 
unless the object is acted 
on by a net torque



General Definition of Torque

• The applied force is not always perpendicular to the 
position vector

• The component of the force perpendicular to the object 
will cause it to rotate 

• When the force is parallel to the position vector, no 
rotation occurs

• When the force is at some angle, the perpendicular 
component causes the rotation



General Definition of Torque
• Let F be a force acting on an object, and let r be a 

position vector from a rotational center to the point of 
application of the force. The magnitude of the torque 
is given by

•   0° or   180 °: 
torque are equal to zero

•   90° or   270 °: magnitude of torque attain to 
the maximum

t sinrF



Understand sinθ
• The component of the force (F

cos  ) has no tendency to 
produce a rotation

• The moment arm, d, is the 
perpendicular distance from 
the axis of rotation to a line 
drawn along the direction of 
the force

d = r sin

FdrF  t sin



The Swinging Door
• Three forces are applied to a door, as shown in 

figure. Suppose a wedge is placed 1.5 m from the 
hinges on the other side of the door. What minimum 
force must the wedge exert so that the force applied 
won’t open the door? Assume F1 = 150 N, F2 = 300 N, 
F3 = 300 N, θ = 30°

F12.0m

F2
θ

F3



Moment of Inertia
• For a single particle, the definition of moment of 

inertia is 

– m is the mass of the single particle
– r is the rotational radius

• SI units of moment of inertia are kg.m2

• Moment of inertia and mass of an object are different 
quantities

• It depends on both the quantity of matter and its 
distribution (through the r2 term)

2mrI 



Moment of Inertia of Point Mass
• For a composite particle, the definition of moment of inertia 

is 

– mi is the mass of the ith single particle
– ri is the rotational radius of ith particle

• SI units of moment of inertia are kg.m2

• Consider an unusual baton made up of four sphere fastened 
to the ends of very light rods

• Find I about an axis perpendicular to the page and passing 
through the point O where the rods cross
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The Baton Twirler
• Consider an unusual baton made up 

of four sphere fastened to the ends of 
very light rods. Each rod is 1.0m long 
(a = b = 1.0 m). M = 0.3 kg and m = 
0.2 kg. 

• (a) Find I about an axis perpendicular 
to the page and passing through the 
point where the rods cross. Find KR if 
angular speed is 

• (b) The majorette tries spinning her 
strange baton about the axis y, 
calculate I of the baton about this axis 
and KR if angular speed is 



Moment of Inertia of Extended Objects

• Divided the extended objects into many small volume 
elements, each of mass Dmi

• We can rewrite the expression for I in terms of Dm

• Consider a small volume such that dm = r dV.  Then

• If r is constant, the integral can be evaluated with known 
geometry, otherwise its variation with position must be 
known
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Densities
• You know the density (volume density) as mass/unit 

volume
– r = M/V = dm/dV => dm = rdV

• We can define other densities such as surface 
density (mass/unit area)
– s = M/A = dm/dA => dm = sdV

• Or linear density (mass/unit length)
– l = M/L = dm/dx                 => dm = ldV



Moment of Inertia 
of a Uniform Rigid Rod

• The shaded area has a 
mass 
– dm = l dx

• Then the moment of 
inertia is
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Moment of Inertia for some other common 
shapes





Parallel-Axis Theorem
• In the previous examples, the axis of rotation 

coincides with the axis of symmetry of the 
object

• For an arbitrary axis, the parallel-axis 
theorem often simplifies calculations

• The theorem states 
I = ICM + MD 2

– I is about any axis parallel to the axis through the 
center of mass of the object

– ICM is about the axis through the center of mass
– D is the distance from the center of mass axis to 

the arbitrary axis

D



Moment of Inertia 
of a Uniform Rigid Rod

• The moment of inertia 
about y is

• The moment of inertia 
about y’ is
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Newton’s Second Law for a Rotating Object

• When a rigid object is subject to a net torque (≠0), it 
undergoes an angular acceleration

• The angular acceleration is directly proportional to the 
net torque

• The angular acceleration is inversely proportional to the 
moment of inertia of the object

• The relationship is analogous to

It S 

  maF



Strategy to use the Newton 2nd Law
• Draw or sketch system.  Adopt coordinates, indicate rotation 
axes, list the known and unknown quantities, …
• Draw free body diagrams of key parts.  Show forces at their 
points of application.  Find torques about a (common) axis

• May need to apply Second Law twice, once to each part

 Translation:

 Rotation:

• Make sure there are enough (N) equations; there may be 
constraint equations (extra conditions connecting unknowns)
• Simplify and solve the set of (simultaneous) equations.
• Find unknown quantities and check answers

amFF inet


 

   Iinet tt  

Note: can have
Fnet = 0 
but  tnet ≠ 0



The Falling Object
• A solid, frictionless cylindrical reel of mass 

M = 2.5 kg and radius R = 0.2 m is used to 
draw water from a well. A bucket of mass 
m = 1.2 kg is attached to a cord that is 
wrapped around the cylinder. 

• (a) Find the tension T in the cord and 
acceleration a of the object. 

• (b) If the object starts from rest at the top 
of the well and falls for 3.0 s before hitting 
the water, how far does it fall ?



Newton 2nd Law for Rotation
• Draw free body diagrams 

of each object
• Only the cylinder is 

rotating, so apply 
S t = I

• The bucket is falling, but 
not rotating, so apply 
S F = ma

• Remember that a = r and 
solve the resulting 
equations

r

a

mg
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So far: 2 Equations, 3 unknowns Need a constraint:

For mass m:

FBD for disk, with axis at “o”:

r

a

mg

support force
at axis “O” has
zero torque

T

mg

y

N

MgT

yF ma mg T  
( ) T m g a  Unknowns: T, a
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Substitute and solve:
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• Cord wrapped around disk, hanging weight
• Cord does not slip or stretch  constraint
• Disk’s rotational inertia slows accelerations
• Let m = 1.2 kg, M = 2.5 kg, r =0.2 m



For mass m:
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• Cord wrapped around disk, hanging weight
• Cord does not slip or stretch  constraint
• Disk’s rotational inertia slows accelerations
• Let m = 1.2 kg, M = 2.5 kg, r =0.2 m



Rotational Kinetic Energy

• There is an analogy between the kinetic energies 
associated with linear motion (K = ½ mv2) and the 
kinetic energy associated with rotational motion (KR 

= ½ I2). Where I is the moment of inertia.

• Rotational kinetic energy is not a new type of energy, 
the form is different because it is applied to a 
rotating object

• Units of rotational kinetic energy are Joules (J)



• An object rotating about z axis with an angular 
speed, ω, has rotational kinetic energy

• The total rotational kinetic energy of the rigid object 
is the sum of the energies of all its particles
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Work-Energy Theorem for pure 
Translational motion 

• The work-energy theorem tells us

• Kinetic energy is for point mass only, ignoring 
rotation.

• Work

• Power
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Mechanical Energy Conservation 
• Energy conservation

• When Wnc = 0,

• The total mechanical energy is conserved and remains the 
same at all times

• Remember, this is for conservative forces, no dissipative 
forces such as friction can be present
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Total Energy of a System
• A ball is rolling down a ramp
• Described by three types of energy

– Gravitational potential energy

– Translational kinetic energy

– Rotational kinetic energy

• Total energy of a system 2 21 1

2 2CME Mv Mgh I + +
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Work done by a pure rotation
• Apply force F to mass at point r, causing 

rotation-only about axis
• Find the work done by F applied to the 

object at P as it rotates through an 
infinitesimal distance ds

• Only transverse component of F does 
work – the same component that 
contributes to torque tddW 
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Work-Kinetic Theorem pure rotation

• As object rotates from i to f , work done by the torque

• I is constant for rigid object

• Power
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• An motor attached to a grindstone exerts a constant torque of 10 
N-m. The moment of inertia of the grindstone is I = 2 kg-m2. The 
system starts from rest.
– Find the kinetic energy after 8 s

– Find the work done by the motor during this time

– Find the average power delivered by the motor

– Find the instantaneous power at t = 8 s
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Work-Energy Theorem
• For pure translation

• For pure rotation

• Rolling: pure rotation + pure translation
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Energy Conservation
• Energy conservation

• When Wnc = 0,

• The total mechanical energy is conserved and remains the 
same at all times

• Remember, this is for conservative forces, no dissipative 
forces such as friction can be present
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Total Energy of a Rolling System
• A ball is rolling down a ramp
• Described by three types of energy

– Gravitational potential energy

– Translational kinetic energy

– Rotational kinetic energy

• Total energy of a system 22
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Problem Solving Hints
• Choose two points of interest

– One where all the necessary information is given
– The other where information is desired

• Identify the conservative and non-conservative 
forces

• Write the general equation for the Work-Energy 
theorem if there are non-conservative forces
– Use Conservation of Energy if there are no non-

conservative forces
• Use v = r to combine terms
• Solve for the unknown



A Ball Rolling Down an Incline
• A ball of mass M and radius R starts from rest at a height of h 

and rolls down a 30 slope, what is the linear speed of the 
ball when it leaves the incline? Assume that the ball rolls 
without slipping.
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Rotational Work and Energy
• A ball rolls without slipping down incline A, 

starting from rest. At the same time, a box 
starts from rest and slides down incline B, 
which is identical to incline A except that it is 
frictionless. Which arrives at the bottom first?

• Ball rolling:

• Box sliding
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Blocks and Pulley
• Two blocks having different masses m1 and m2

are connected by a string passing over a pulley. 
The pulley has a radius R and moment of inertia 
I about its axis of rotation. The string does not 
slip on the pulley, and the system is released 
from rest.

• Find the translational speeds of the blocks after 
block 2 descends through a distance h. 

• Find the angular speed of the pulley at that 
time.



• Find the translational speeds of the blocks after block 2 
descends through a distance h. 

• Find the angular speed of the pulley at that time.
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Statics Structure
• Equilibrium

• Static equilibrium conditions
– Net external force must equal zero
– Net external torque must equal zero

• Center of mass

• Center of gravity

• Solving static equilibrium problems



Static and Dynamic Equilibrium
• Equilibrium implies the object is at rest (static) or its 

center of mass moves with a constant velocity 
(dynamic)

• We will consider only with the case in which linear 
and angular velocities are equal to zero, called “static 
equilibrium” : vCM = 0 and w = 0

• Examples
– Book on table
– Hanging sign
– Ceiling fan – off
– Ceiling fan – on
– Ladder leaning against wall



Conditions for Equilibrium
• The first condition of 

equilibrium is a statement of 
translational equilibrium

• The net external force on the 
object must equal zero

• It states that the translational 
acceleration of the object’s 
center of mass must be zero

0 amFF extnet





Conditions for Equilibrium
• If the object is modeled as a 

particle, then this is the only 
condition that must be satisfied 

• For an extended object to be in 
equilibrium, a second condition 
must be satisfied

• This second condition  involves 
the rotational motion of the 
extended object

0 extnet FF




Conditions for Equilibrium
• The second condition of 

equilibrium is a statement of 
rotational equilibrium

• The net external torque on the 
object must equal zero

• It states the angular 
acceleration of the object to be 
zero

• This must be true for any axis of 
rotation

0 


Iextnet



Conditions for Equilibrium

• The net force equals zero
– If the object is modeled as a particle, then this is 

the only condition that must be satisfied 

• The net torque equals zero
– This is needed if the object cannot be modeled as 

a particle

• These conditions describe the rigid objects in 
the equilibrium analysis model

0F


0  



Static Equilibrium
Consider a light rod subject to the two forces 
of equal magnitude as shown in figure. 
Choose the correct statement with regard to 
this situation:
(A) The object is in force equilibrium but 

not torque equilibrium.
(B) The object is in torque equilibrium but 

not force equilibrium
(C) The object is in both force equilibrium 

and torque equilibrium
(D) The object is in neither force 

equilibrium nor torque equilibrium



Equilibrium Equations
• For simplicity, We will restrict the applications to 

situations in which all the forces lie in the xy 
plane.

• Equation 1:
• Equation 2: 
• There are three resulting equations
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If all the forces acting on the rigid body are planar and all the couples are 

perpendicular to the plane of the body, equations of equilibrium become 

two dimensional. In two dimensional problems, in alternative to the above 

set of equations, two more sets of equations can be employed in the 

solution of problems.

Points A, B and C in the latter set cannot lie along the same line, if they do, 

trivial equations will be obtained.
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Alternative Equations of Equilibrium



The first step in the analysis of the equilibrium of rigid bodies must be to draw the 

“free body diagram” of the body in question. 

1) If there exists, identify the two force members in the problem.

2) Decide which system to isolate.

3) Isolate the chosen system by drawing a diagram which represents its complete

external boundary.

4) If not given with the problem, select a coordinate system which appropriately 

suits with the given forces and/or dimensions.

5) Identify all forces which act on the isolated system applied by removing the 

contacting or attracting bodies, and represent them in their proper positions on 

the diagram.

6) Write the equations of equilibrium and solve for the unknowns.

Free Body Diagram



Case Study
A seesaw consisting of a uniform board of mass mpl and length L
supports at rest a father and daughter with masses M and m,
respectively. The support is under the center of gravity of the board,
the father is a distance d from the center, and the daughter is a
distance 2.00 m from the center.

– A) Find the magnitude of the upward force n exerted by the
support on the board.

– B) Find where the father should sit to balance the system at
rest.
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A) Find the magnitude of 
the upward force n exerted 
by the support on the 
board.

B) Find where the father 
should sit to balance the 
system at rest.
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B) Find where the father should sit to balance the system at rest.
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Axis of Rotation
• The net torque is about an axis through any point in 

the xy plane
• Does it matter which axis you choose for calculating 

torques?
• NO. The choice of an axis is arbitrary
• If an object is in translational equilibrium and the net 

torque is zero about one axis, then the net torque 
must be zero about any other axis

• We should be smart to choose a rotation axis to 
simplify problems



Where is the Center of Mass ?
• Assume m1 = 1 kg, m2 = 3 kg, and x1 = 1 m, x2

= 5 m, where is the center of mass of these 
two objects?
A) xCM = 1 m
B) xCM = 2 m
C) xCM = 3 m
D) xCM = 4 m
E) xCM = 5 m
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Center of Mass (CM)
• An object can be divided into 

many small particles
– Each particle will have a 

specific mass and specific 
coordinates

• The x coordinate of the center 
of mass will be

• Similar expressions can be 
found for the y coordinates
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Center of Gravity

• The torque due to the gravitational force on an 
object of mass M is the force Mg acting at the center 
of gravity of the object

• If g is uniform over the object, then the center of 
gravity of the object coincides with its center of mass

• If the object is homogeneous and symmetrical, the 
center of gravity coincides with its geometric center



Center of Gravity (CG)
• All the various gravitational forces acting on all the various 

mass elements are equivalent to a single gravitational force 
acting through a single point called the center of gravity (CG)

• If

• then
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CG of a Ladder
• A uniform ladder of 

length l rests against a 
smooth, vertical wall. 
When you calculate the 
torque due to the 
gravitational force, you 
have to find center of 
gravity of the ladder. The 
center of gravity should 
be located at

C

A

B

D

E



Ladder Example
• A uniform ladder of length l 

rests against a smooth, 
vertical wall. The mass of the 
ladder is m, and the 
coefficient of static friction 
between the ladder and the 
ground is s = 0.40. Find the 
minimum angle  at which 
the ladder does not slip.



Problem-Solving Strategy 1
• Draw sketch, decide what is in or out the system
• Draw a free body diagram (FBD)
• Show and label all external forces acting on the object
• Indicate the locations of all the forces
• Establish a convenient coordinate system
• Find the components of the forces along the two axes
• Apply the first condition for equilibrium 
• Be careful of signs
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Which free-body diagram is correct?
• A uniform ladder of length l rests against a smooth, 

vertical wall. The mass of the ladder is m, and the 
coefficient of static friction between the ladder and the 
ground is s = 0.40. gravity: blue, friction: orange, 
normal: green

A B C D



• A uniform ladder of length l rests against a smooth, vertical 
wall. The mass of the ladder is m, and the coefficient of static 
friction between the ladder and the ground is s = 0.40. Find 
the minimum angle  at which the ladder does not slip.
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Problem-Solving Strategy 2
• Choose a convenient axis for calculating the net torque on 

the object
– Remember the choice of the axis is arbitrary

• Choose an origin that simplifies the calculations as much as 
possible
– A force that acts along a line passing through the origin produces a 

zero torque

• Be careful of sign with respect to rotational axis
– positive if force tends to rotate object in CCW
– negative if force tends to rotate object in CW
– zero if force is on the rotational axis 

• Apply the second condition for equilibrium 0,,  zextznet 



Choose an origin O that simplifies the 
calculations as much as possible ? 

• A uniform ladder of length l rests against a smooth, vertical wall. 
The mass of the ladder is m, and the coefficient of static friction 
between the ladder and the ground is s = 0.40. Find the 
minimum angle.

mg mg mg mg
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• A uniform ladder of length l rests against a smooth, vertical 
wall. The mass of the ladder is m, and the coefficient of static 
friction between the ladder and the ground is s = 0.40. Find 
the minimum angle  at which the ladder does not slip.
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Problem-Solving Strategy 3
• The two conditions of equilibrium will give a system of 

equations
• Solve the equations simultaneously
• Make sure your results are consistent with your free body 

diagram
• If the solution gives a negative for a force, it is in the 

opposite direction to what you drew in the free body 
diagram

• Check your results to confirm
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Horizontal Beam Example
• A uniform horizontal beam with a 

length of l = 8.00 m and a weight of 
Wb = 200 N is attached to a wall by a 
pin connection. Its far end is 
supported by a cable that makes an 
angle of  = 53 with the beam. A 
person of weight Wp = 600 N stands a 
distance d = 2.00 m from the wall. 
Find the tension in the cable as well as 
the magnitude and direction of the 
force exerted by the wall on the 
beam.



Horizontal Beam Example
• The beam is uniform

– So the center of gravity is 
at the geometric center of 
the beam

• The person is standing on 
the beam

• What are the tension in the 
cable and the force exerted 
by the wall on the beam?



Horizontal Beam Example, 2
• Analyze

– Draw a free body 
diagram

– Use the pivot in the 
problem (at the wall) as 
the pivot
• This will generally be 

easiest

– Note there are three 
unknowns (T, R, )



• The forces can be 
resolved into 
components in the free 
body diagram

• Apply the two 
conditions of 
equilibrium to obtain 
three equations

• Solve for the unknowns

Horizontal Beam Example, 3



Horizontal Beam Example, 3
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Fluid Mechanics
• Density
• Pressure
• Pascal
• Archimedes and buoyancy
• Surface tension
• Fluid flow
• Continuity
• Bernoulli
• Viscosity and Viscous Drag
• Diffusion and osmosis



Preface
Why must the shark keep 
moving to stay afloat while 
the small fish can remain at 
the same level with little 
effort?

We begin with fluids at rest 
and then move on to the 
more complex field of fluid 
dynamics. Its called fluid 
mechanics, then go to 
fluids engineering. 



Density
• The density of a material is 

its mass per unit volume:
 = m/V

• The specific gravity of a 
material is its density 
compared to that of water at 
4°C.

• How much does the air in a 
room weigh? Using data 
table on the next slide.



Densities of Some Common Substances



Pressure
Pressure arises from the 
collisions between the particles 
of a fluid with another object 
(container walls for example).

There is a momentum change 
(impulse) that is away from the 
container walls.  There must be a 
force exerted on the particle by 
the wall. By Newton’s 3rd Law, 
there is a force on the wall due to 
the particle.

Pressure is defined as .
A

F
P 

The units of pressure are N/m2

and are called Pascals (Pa).



Pressure in A Fluid

• The pressure in a fluid is the normal force per unit area: p 
= dF/dA. Refer to Figures below



Gravity’s Effect on Fluid Pressure

An 
imaginary 
cylinder of 
fluid

FBD for the fluid 
cylinder

P1A

P2A
w

x

y

Imaginary 
cylinder 
can be any 
size



Pressure at Depth in a Fluid

• The pressure at a depth h in a 
fluid of uniform density is given 
by P = P0 + gh. As Figure at the 
right illustrates, the shape of the 
container does not matter.

• The gauge pressure is the 
pressure above atmospheric 
pressure. The absolute pressure is 
the total pressure.

• Follow the figure, which involves 
both gauge and absolute pressure.



Pascal’s Law
• Pascal’s law: Pressure applied to 

an enclosed fluid is transmitted 
undiminished to every portion of 
the fluid and the walls of the 
containing vessel.

• The hydraulic life shown in 
Figure is an application of 
Pascal’s law.
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Two Types of Pressure Gauge
• Figure below shows two types of gauges for measuring 

pressure.



A tale of two fluids



Archimedes
• When a body is completely or partially immersed in a fluid, the 

fluid exerts an upward force (the “buoyant force”) on the body 
equal to the weight of the fluid displaced by the body. See Figure 
below.



Buoyancy

The magnitude of the buoyant force is:

 APP

APAP

FFFB

12

12

12





gdPP  12
From before:

gVgdAFB  The result is

Buoyant force = the weight of the fluid displaced
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Surface Tension
• The surface of a liquid 

behaves like a membrane 
under tension, so it resists 
being stretched. This force 
is the surface tension. See 
Figure at the right.

• The surface tension allows 
the insect shown at the 
right to walk on water.

• The surface tension is a 
force per unit length.



Fluid Flow
A moving fluid will exert forces parallel to the surface over which it 
moves, unlike a static fluid.  This gives rise to a viscous force that 
impedes the forward motion of the fluid. A steady flow is one 
where the velocity at a given point in a fluid is constant.

Steady flow is laminar; the fluid flows in layers.  The path that the 
fluid in these layers takes is called a streamline. Streamlines do not 
cross. Crossing streamlines would indicate a volume of fluid with 
two different velocities at the same time. An ideal fluid is 
incompressible, undergoes laminar flow, and has no viscosity.

V1 = 
constant

V2 = 
constant

v1v2



Streamline Flow

• The flow lines in the bottom figure 
are laminar because adjacent layers 
slide smoothly past each other.  

• In the figure at the right, the upward 
flow is laminar at first but then 
becomes turbulent flow.



The Continuity

Faster Slower

is the mass flow rate (units kg/s)Av
t

m 



Av
t

V





222111 vAvA  The continuity equation is

If the fluid is incompressible, then 1= 2.

is the volume flow rate (units m3/s)



Bernoulli

2
222

2
111 2

1

2

1
vgyPvgyP  

Potential 
energy per 
unit volume

Kinetic energy 
per unit 
volume

Work per unit 
volume  done 
by the fluid

Points 1 and 2 
must be on the 
same streamline



A Curve Ball



Lift on Airplane Wing



Water Pressure in The Home



Speed of Efflux



The Venturi meter



Viscosity

• A real fluid has viscosity (fluid friction).  This implies a 
pressure difference needs to be maintained across the 
ends of a pipe for fluid to flow.

• Viscosity () also causes the existence of a velocity 
gradient across a pipe.  A fluid flows more rapidly in the 
center of the pipe and more slowly closer to the walls of 
the pipe.

• The volume flow rate for laminar flow of a viscous fluid is 
given by Poiseuille’s Law.
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Viscosity and Turbulence
• Viscosity is internal 

friction in a fluid. 
Turbulence is irregular 
chaotic flow that is no 
longer laminar.



Viscous Drag

• The viscous drag force on a sphere is 
given by Stokes’ law.

• Where  is the viscosity of the fluid that 
the sphere is falling through, r is the 
radius of the sphere, and v is the velocity 
of the sphere.

rvFD 6



Diffusion
Molecules move from region of high concentration to region of 
low concentration. Fick’s Law: (D = diffusion coefficient)

Diffusion rate 
Mass

time
 DA

C2 C1

L








Osmosis
Movement of water through a boundary while denying 
passage to specific molecules, e.g. salts
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Temperature, Heat, Thermal

• Temperature
• Thermometers
• Heat
• Thermal energy

– Conduction
– Convection
– Radiation



Temperature

• Temperature depends on Particle Movement

• All matter is made up of atoms that are 
moving, even solid objects have atoms that 
are vibrating.

• The motion from the atoms gives the object 
energy.



Particle Movement

• All of the particles that 
make up matter are 
constantly in motion

• Solid= vibrating atoms
• Liquid= flowing atoms
• Gas= move freely
• Plasma= move incredibly

fast and freely



Movement Energy

•The Measure of the 
average kinetic energy 
of all the particles in 
the object

•The atoms mass and 
speed determine the 
temperature of the 
object



Measuring Temperature

• Temperature is measured in 
units called degrees (oC,R,F,K)

• Celsius: Water freezes at 0oC 
and boils at 100oC

• Reaumur: Water freezes at 0oC 
and boils at 80oC

• Fahrenheit:  Water freezes 32oF 
and boils at 212oF

• Temperature Scale C : R : F = 5 : 
4 : 9



Absolute Temperature

ºF

ºC

K

-459 32 212

-273 0 100

0 273 373

 32FC 9
5  K = ºC + 273

• Always use absolute temperature (Kelvin) 
when working with gases.



Thermometers

Thermometers are 
instruments designed to 
measure temperature. In 
order to do this, they 
take advantage of some 
property of matter that 
changes with 
temperature.



How does a Thermometer Work?

• The thermometer can measure temperature 
because the substance of the liquid inside 
always expands (increases) or contracts
(decreases) by a certain amount due to a 
change in temperature.

• Common thermometers used today include the
liquid-in-glass type and the bimetallic strip.



The Example of Thermometers



Heat

• Heat is a flow of energy due to temperature 
differences. Energy from an object at a higher 
temperature to an object at a lower 
temperature.

• All gases, liquids, and most solids expand 
when their temperature increases. This is why 
bridges are built with short segments with 
small breaks to allow for expansion



Measuring Heat

• Heat is measured by the units of calorie and 
joule (J).

• calorie: The amount of energy needed to raise 
the temperature of 1 gram of water by 1oC

• 1 calorie= 4.18 J



Specific Heat Capacity

• The specific heat of a substance is defined as 
the energy required to change the 
temperature of 1 kg of a substance by 1oC.

• Every substance has a unique specific heat 
capacity. This value tells you how much the 
temperature of a given mass of that substance 
will increase or decrease, based on how much 
heat energy is added or removed.



Calculation of Specific Heat

• C = specific heat capacity      Units [J/(kg.K)]
• m = mass

• T = change in temperature  Tfinal – Tinitial

• Q = heat energy transferred     



Thermal Energy
• The total energy of all the particles.  

• If 2 samples of matter are at the same temperature 
they do not necessarily have the same total energy.  

• Heat is thermal energy moving from a warmer object to 
a cooler object.  

• There are 3 ways that heat can move.  
– Conduction
– Convection 
– Radiation  



Conduction
• The process that moves energy from one object to 

another when they are touching physically.

• It is also described as the transfer of thermal energy 
through matter, from a region of higher temperature to a 
region of lower temperature, and acts to equalize 
temperature differences

• Conductors: materials that transfer energy easily.

• Insulators: materials that do not transfer energy easily.

• Hot cup of cocoa transfers heat energy to cold hands



Convection

• The process that transfers energy by the 
movement of large numbers of particles in the 
same direction within a liquid or gas. the warm 
fluid rises and cooler fluids flow in to replace it.  
This creates a circular flow. Cycle in Nature



Radiation

• The energy that travels 
by electromagnetic 
waves (visible light, 
microwaves, and infrared 
light)

• Radiation from the sun 
strikes the atoms in your 
body and transfers 
energy



Conduction Convection Radiation
•Energy 
transferred by 
direct contact

•Energy flows 
directly from 
warmer to cooler 
objects

•Continues until 
object 
temperatures 
are equal

•Occurs in gases 
and liquids

•Movement of 
large number of 
particles in same 
direction

•Cycle occurs 
while 
temperature 
differences exist

•Energy transferred 
by electromagnetic 
waves (visible light, 
microwaves, 
infrared)

•All objects radiate 
energy

•Can transfer energy 
through empty 
space

Comparison
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Gas Mechanic Theory

• Atomic Theory of Matter

• Thermal Expansion

• Kinetic Theory

• Distribution of Molecular Speeds

• Real Gases and Changes of Phase

• Vapor Pressure and Humidity

• Diffusion



Atomic and molecular masses are measured in 
unified atomic mass units (u). This unit is defined so 
that the carbon-12 atom has a mass of exactly 
12.0000 u. Expressed in kilograms:

1 u = 1.6605 × 10−27 kg

Brownian motion is the
jittery motion of tiny flecks
in water; these are the result
of collisions with individual
water molecules.

Atomic Theory of Matter



On a microscopic scale, the arrangements of 
molecules in solids (a), liquids (b), and gases (c) 
are quite different.



Linear expansion 
occurs when an 

object is heated.

Here, α is the coefficient of linear expansion.

Thermal Expansion

(13-1b)



Volume expansion is 
similar, except that it is 
relevant for liquids and 
gases as well as solids: 
For uniform solids, β ≈ 
3α.

β is the coefficient of 
volume expansion.

Thermal Expansion for Uniform Solid



Thermal Expansion for Material

A material may be fixed at its ends and therefore be unable 
to expand when the temperature changes. It will then 
experience large compressive or tensile stress—thermal 
stress—when its temperature changes.

The force required to keep the material from expanding is 
given by:

where E is the Young’s modulus of the material. Therefore, 
the stress is:



Thermal Expansion for Water

Water behaves differently from most other solids—its 
minimum volume occurs when its temperature is 4°C. As it 
cools further, it expands, as anyone who has left a bottle in 
the freezer to cool and then forgets about it can testify.



Assumptions of kinetic theory:

• large number of molecules, moving in random 
directions with a variety of speeds

• molecules are far apart, on average

• molecules obey laws of classical mechanics 
and interact only when colliding

• collisions are perfectly elastic

Kinetic Theory



The force exerted on the wall by 
the collision of one molecule is

Then the force due to all 
molecules colliding with that wall 
is

Kinetic Theory: Force



Kinetic Theory: Pressure

The averages of the squares of the speeds in all 
three directions are equal:

So the pressure is:



Kinetic Theory: Energy

Rewriting,                               

The average translational kinetic energy of the 

molecules in an ideal gas is directly proportional 
to the temperature of the gas.



Kinetic Theory: Velocity
We can invert this to find the average speed of molecules in 
a gas as a function of temperature:



Distribution of Molecular Speeds

These two graphs show
the distribution of speeds
of molecules in a gas, as 
derived by Maxwell. The 
most probable speed, vP,
is not quite the same as 
the rms speed.

As expected, the curves 
shift to the right with 
temperature.



Real Gases and Changes of Phase

The curves here represent the 
behavior of the gas at different 
temperatures. The cooler it 
gets, the farther the gas is from 
ideal.

In curve, the gas
becomes liquid; it begins 
condensing at (b) and is 
entirely liquid at (a). The point 
(c) is called the critical point.



Critical Temperature & Pressure

Below the critical 
temperature, the 
gas can liquefy if 
the pressure is 
sufficient; above it, 
no amount of 
pressure will 
suffice.



PT diagram is called a 
phase diagram; it shows 
all three phases of 
matter. The solid-liquid 
transition is melting or 
freezing; the liquid-
vapor one is boiling or 
condensing; and the 
solid-vapor one is 
sublimation.

Phase Diagram of Water



The triple point is the only point where all three phases 
can coexist in equilibrium.

Phase Diagram of Carbon Oxide



An open container of water can 
evaporate, rather than boil, away. The 
fastest molecules are escaping from the 
water’s surface, so evaporation is a 
cooling process as well.

The inverse process is called 
condensation.

When the evaporation and condensation 
processes are in equilibrium, the vapor 
just above the liquid is said to be 
saturated, and its pressure is the 
saturated vapor pressure.

Vapor Pressure and Humidity



The saturated vapor pressure 
increases with temperature.

Saturated Vapor Pressure for Water

A liquid boils 
when its 
saturated 
vapor 
pressure 
equals the 
external 
pressure.



Partial pressure is the pressure each component of a 
mixture of gases would exert if it were the only gas 
present. The partial pressure of water in the air can 
be as low as zero, and as high as the saturated vapor 
pressure at that temperature.

Relative humidity is a measure of the saturation of
the air.

Partial Pressure & Relative Humidity



Humidity

When the humidity is high, it 
feels muggy; it is hard for any 
more water to evaporate.

The dew point is the 
temperature at which the air 
would be saturated with water.

If the temperature goes below
the dew point, dew, fog, or 
even rain may occur.



Diffusion
Even without stirring, a few drops of dye in 
water will gradually spread throughout. This 
process is called diffusion.



Diffusion Process

Diffusion occurs from a region of high concentration 
towards a region of lower concentration.



Rate of Diffusion

The rate of diffusion is 
given by:

In this equation, D is the 
diffusion constant.
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Gas LawsGas Laws

• Physical Properties

• Temperature and Pressure

• Boyle, Charles, Gay-Lussac

• Ideal Gas

• Avogadro’s Number



Molecular Theory of Gas

• Particles in an ideal gas…
– have no volume.
– have elastic collisions. 
– are in constant, random, 

straight-line motion.
– don’t attract or repel each 

other.
– have an average of kinetic 

energy directly related to 
Kelvin temperature.



Characteristics of Gases

• Gases expand to fill any container.
– random motion, no attraction

• Gases are fluids (like liquids).
– no attraction

• Gases have very low densities.
– no volume = lots of empty space

• Gases can be compressed.
– no volume = lots of empty space

• Gases undergo diffusion & effusion.
– random motion



Temperature

• Temperature depends on Particle Movement

• All matter is made up of atoms that are moving, 
even solid objects have atoms that are vibrating.

• The motion from the atoms gives the object 
energy.

• More about Temperature, please refer to our 
previous lecture



Pressure

area

force
pressure 

Which shoes create the most pressure?



Measuring Pressure
• Barometer

– measures atmospheric pressure

Mercury Barometer

Aneroid Barometer



• Manometer
– measures contained gas pressure

U-tube Manometer Bourdon-tube gauge



Pressure Units

2m

N
kPa

• KEY UNITS

101.325 kPa (kilo Pascal)

1 atm

760 mm Hg

760 torr

14.7 psi



The Gas LawsThe Gas Laws

• Boyle, Charles, Gay Lusac. Based on 
Temperature, Pressure, Volume.

• Standard Temperature & Pressure (STP)

0°C 273 K

1 atm 101.325 kPa

-OR-



Boyle’s Experiment

Volume 
(mL) 

Pressure 
(torr) 

P·V 
(mL·torr) 

10.0 760.0 7.60 x 103 

20.0 379.6 7.59 x 103 

30.0 253.2 7.60 x 103 

40.0 191.0 7.64 x 103 
 



Boyle’s Law

• The pressure and volume of a gas are inversely 
related 
– at constant mass & temp

P

V

PV = k



Charles’ Experiment

Volume 
(mL) 

Temperature 
(K) 

V/T 
(mL/K) 

40.0 273.2 0.146 

44.0 298.2 0.148 

47.7 323.2 0.148 

51.3 348.2 0.147 
 



k
T

V
V

T

Charles’ Law
• The volume and absolute temperature (K) of a 

gas are directly related 
– at constant mass & pressure



Gay-Lussac’s Experiment

Temperature 
(K) 

Pressure 
(torr) 

P/T 
(torr/K) 

248 691.6 2.79 

273 760.0 2.78 

298 828.4 2.78 

373 1,041.2 2.79 
 



k
T

P
P

T

Gay-Lussac’s Law
• The pressure and absolute temperature (K) of 

a gas are directly related 
– at constant mass & volume



Combined Gas Law

= kPV
T

P1V1

T1
=

P2V2

T2

P1V1T2 = P2V2T1



We can combine the three relations just derived 
into a single relation:

PV T

What about the amount of gas present? If the 
temperature and pressure are constant, the 
volume is proportional to the amount of gas:

PV mT

Ideal Gas



Mole
A mole (mol) is defined as the number of grams of a 
substance that is numerically equal to the molecular 
mass of the substance:

1 mol H2 has a mass of 2 g

1 mol Ne has a mass of 20 g

1 mol CO2 has a mass of 44 g

The number of moles in a certain mass of material:



The Ideal Gas Law

We can now write the ideal gas law:

where n is the number of moles and R is the 
universal gas constant.



Gas Law Problems

• A gas occupies 473 cm3 at 36°C. Find its 
volume at 94°C. 

• A gas occupies 100. mL at 150. kPa.  Find its 
volume at 200. kPa.

• A gas occupies 7.84 cm3 at 71.8 kPa & 25°C.  
Find its volume at STP. 



Problem Solving with the Ideal Gas Law

Useful facts and definitions:
• Standard temperature and pressure (STP)

T = 273 K (0°C)
P = 1.00 atm = 1.013 × 105 N/m2 = 101.3 kPa

• Volume of 1 mol of an ideal gas is 22.4 L

• If the amount of gas does not change:

• Always measure T in kelvins

• P must be the absolute pressure



Since the gas constant is universal, the number of 
molecules in one mole is the same for all gases. 
That number is called Avogadro’s number:

NA = 6.02 × 1023

The number of molecules in a gas is the number 
of moles times Avogadro’s number:

N = nNA

Avogadro’s Number



Therefore we can write:

where k is called Boltzmann’s constant.

Ideal Gas Law in Terms of Molecules: 
Avogadro’s Number
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Thermodynamics, Entropy, Free Energy

• Zeroth Law of Thermodynamics
• First Law of Thermodynamics
• Entropy
• Second Law of Thermodynamics
• Spontaneous & irreversible Process
• Hess Law
• Third Law of Thermodynamics
• Gibbs Free Energy



Zeroth Law of Thermodynamics

Two objects placed in thermal contact will 
eventually come to the same temperature. When 
they do, we say they are in thermal equilibrium.

The zeroth law of thermodynamics says that if 
two objects are each in equilibrium with a third 
object, they are also in thermal equilibrium with 
each other.



First Law of Thermodynamics

• Energy cannot be created nor destroyed.
• Therefore, the total energy of the universe 

is a constant.
• Energy can, however, be converted from 

one form to another or transferred from a 
system to the surroundings or vice versa.



Entropy
• Entropy (S) is a term coined by Rudolph 

Clausius in the 19th century.
• Clausius was convinced of the significance of 

the ratio of heat delivered and the 
temperature at which it is delivered.

• Entropy can be thought of as a measure of the 
randomness of a system. It is related to the 
various modes of motion in molecules.

• It is symbolized by S.



More about Entropy
• Entropy is a measure of randomness or disorder 

of a system. So, if there is a increase in disorder, 
S is positive

• Some Examples of an increase of entropy
– Diffusion – the process of dispersion
– Reduction of pressure of a gas
– Production of more gas in a chemical reaction
– Total number of moles of products is greater than 

the number of moles of reactants [Example: 
2NI3 (s)  N2 (g) + 3I2 (g)]



Calculation of Entropy
• For a process occurring at constant temperature (an 

isothermal process): qrev = the heat that is transferred 
when the process is carried out reversibly at a constant 
temperature. T = temperature in Kelvin. 

• Like total energy, E, and enthalpy, H, entropy is a state 
function. Therefore, 

S = Sfinal  Sinitial



Entropy on the Molecular Scale
• Ludwig Boltzmann described the concept of entropy on 

the molecular level.

• Temperature is a measure of the average kinetic energy 
of the molecules in a sample.

• Boltzmann envisioned the motions of a sample of 
molecules at a particular instant in time.
– This would be akin to taking a snapshot of all the molecules.

• He referred to this sampling as a microstate of the 
thermodynamic system.



Motion of Molecules

• Molecules exhibit several types of motion:
– Translational:  Movement of the entire molecule from one 

place to another.
– Vibrational:  Periodic motion of atoms within a molecule.
– Rotational:  Rotation of the molecule on about an axis or 

rotation about  bonds.



Physical State
• Each thermodynamic state has a specific number of microstates, 

W, associated with it.

• Entropy is
S = k lnW

where k is the Boltzmann constant, 1.38  1023 J/K.

• Entropy increases with the freedom of motion of molecules. 
Therefore, S(g) > S(l) > S(s)

• The number of microstates and, therefore, the entropy tends to 
increase with increases in
– Temperature.
– Volume (gases).
– The number of independently moving molecules.



Implication
• more particles 

-> more states -> more entropy
• higher T

-> more energy states -> more entropy
• less structure (gas vs solid)

-> more states -> more entropy



Dissolution
Dissolution of a solid:
– Ions have more 

entropy (more 
states) But, Some 
water molecules 
have less entropy 
(they are grouped 
around ions).

Usually, there is an overall increase in S.
(The exception is very highly charged ions that make a lot of 
water molecules align around them.)



Second Law of Thermodynamics
• The entropy of the universe does not change for reversible 

processes and increases for spontaneous processes.
• The entropy of the universe increases (real, spontaneous 

processes). But, entropy can decrease for individual 
systems.

Reversible (ideal):

Irreversible (real, spontaneous):



Spontaneous Processes

• Spontaneous processes are 
those that can proceed 
without any outside 
intervention.

• The gas in vessel B will 
spontaneously effuse into 
vessel A, but once the gas is 
in both vessels, it will not
spontaneously



Illustration

Processes that are 
spontaneous in one 

direction are 
nonspontaneous in the 

reverse direction.



Reversible Processes
• In a reversible process 

the system changes in 
such a way that the 
system and 
surroundings can be 
put back in their 
original states by 
exactly reversing the 
process.

• Changes are 
infinitesimally small in 
a reversible process.



Illustration

• Irreversible processes cannot be undone by 
exactly reversing the change to the system.

• All Spontaneous processes are irreversible.
• All Real processes are irreversible. 



Hess’s Law and Entropy
• Hess’s law can also be applied to entropy in the 

same way as it is applied to enthalpy.

• Therefore, S reaction = S products - S reactants

• Example:
Calculate the change in entropy for the following 
reaction using values from page 360 and that 
CH3OH has an S0 of 126.8 J/mol.K:

CO (g) + 2H2 (g)  CH3OH (l)



How can we tell if a reaction will be 
spontaneous?

• Spontaneous means that a reaction will occur without 
continuous outside assistance.

• Well, if there is a decrease in enthalpy, H is negative.  
This helps it to be spontaneous.

• If there is an increase in entropy, S is positive, that 
helps too.

• A higher temperature also helps.
• Josiah Willard Gibbs came up with an answer by putting 

these facts together. He came up with what is now 
known as Gibbs energy, or free energy, or Gibbs free 
energy



Gibbs Energy

• The equation is G = H - TS,
where G is the change in Gibbs energy, H is 
the change in enthalpy, T is the temperature, 
and S is the change in entropy

• If G is a negative number, the reaction will be 
spontaneous.

• If G is a positive number, the reaction will be 
nonspontaneous.

• If G is a zero, the reaction is at equilibrium.



Relating Enthalpy and Entropy Changes to 
Spontaneity

H S G Spontaneous?

Negative Positive Negative Yes, at all 
temperatures

Negative Negative Either Only if T < H/ S

Positive Positive Either Only if T > H/ S

Positive Negative Positive Never



Example

• Using the following values, compute the G value for 
each reaction and predict whether they will occur 
spontaneously.

Reaction H (kJ) Temperature S (J/K)

1 +95 298 K +45

2 -96.1 157 K +119

3 -266 400 C +54



Third Law of Thermodynamics
The entropy of a pure crystalline substance at absolute 
zero is 0.



Standard Entropies

• These are molar 
entropy values of 
substances in their 
standard states.

• Standard entropies 
tend to increase with 
increasing molar 
mass.



Entropy Changes

• In general, entropy 
increases when
– Gases are formed from 

liquids and solids.
– Liquids or solutions are 

formed from solids.
– The number of gas 

molecules increases.
– The number of moles 

increases.



Entropy Phase Changes



Entropy Changes Calculation

Entropy changes for a reaction can be 
calculated the same way we used for H:

S° for each component is found in a table.

Note for pure elements:



Changes in Surroundings
• Heat that flows into or out of the system also 

changes the entropy of the surroundings.
• For an isothermal process:

• At constant pressure, qsys is simply H
for the system.



Link S and H: Phase changes

A phase change is isothermal 
(no change in T).

For water:

Hfusion = 6 kJ/mol
Hvap = 41 kJ/mol

If we do this reversibly: Ssurr = –Ssys



Entropy Change in the Universe

= – Gibbs Free Energy



= – Gibbs Free Energy

Make this equation nicer:



• TSuniverse is defined as the Gibbs free energy, 
G.

• For spontaneous processes: Suniverse > 0
And therefore:  G < 0

• G is easier to determine than Suniverse.

• Use G to decide if a process is spontaneous.



Gibbs Free Energy

1. If G is negative, the 
forward reaction is 
spontaneous.

2. If G is 0, the system is 
at equilibrium.

3. If G is positive, the 
reaction is spontaneous 
in the reverse direction.



Standard Free Energy Changes

• Standard free energies of formation, Gf
are analogous to standard enthalpies of 
formation, Hf.

• G can be looked up in tables, or calculated 
from S° and H.



Free Energy Changes

• This equation shows how G changes with 
temperature. (We assume S° & H° are independent of T)

• There are two parts to the free energy equation:
 H— the enthalpy term
 TS — the entropy term

• The temperature dependence of free energy comes 
from the entropy term.



Free Energy and Temperature

• There are two parts to the free energy equation:
 H— the enthalpy term
 TS — the entropy term

• The temperature dependence of free energy comes from 
the entropy term.

• By knowing the sign (+ or -) of S and H, we can get the 
sign of G and determine if a reaction is spontaneous.



Free Energy and Equilibrium

• If G is 0, the system is at equilibrium. So G must be 
related to the equilibrium constant K . The standard 
free energy, G°, is directly linked to Keq by: 

• Under non-standard conditions, we need to use G 
instead of G°.
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Carnot, Heat Engine, Refrigeration & 
Air Conditioning

• Carnot

• Heat Engine

• Refrigeration

• Air Conditioning



Carnot

1 – 2 isothermal expansion (in contact with TH) 
2 – 3 isentropic expansion to TC

3 – 4    isothermal compression (in contact with TC) 
4 – 1 isentropic compression to TH

(isentropic  adiabatic+quasistatic)

On the S -T diagram, the work done
is the area of the loop:

   PdVTdSdU 0

The heat consumed at TH (1 – 2) is the
area surrounded by the broken line:

 CHHH SSTQ T 

S 

THTC

1

23

4

e
nt

ro
p

y 
co

n
ta

in
e

d 
in

 g
as

- is not very practical (too slow), but operates at the maximum
efficiency allowed by the Second Law.

TC 

P 

V 

TH 

1

2

34

absorbs
heat

rejects heat



Carnot Engine
• The efficiency of a typical automobile engine is less 

than 30%.
– This seems to be wasting a lot of energy.
– What is the best efficiency we could achieve?
– What factors determine efficiency?

• The cycle devised by Carnot that an ideal engine 
would have to follow is called a Carnot cycle.

• An (ideal, not real) engine following this cycle is 
called a Carnot engine.



Carnot Efficiency
• The efficiency of Carnot’s ideal engine is called the 

Carnot efficiency and is given by:

• This is the maximum efficiency possible for any engine 
taking in heat from a reservoir at absolute temperature 
TH and releasing heat to a reservoir at temperature TC.
– The temperature must be measured in absolute 

degrees. 
• Even Carnot’s ideal engine is less than 100% efficient.

eC 
TH TC

TH



Heat engines

• A heat engine is any device 
that partly transforms heat 
into work or mechanical 
energy.

• Simple heat engines operate 
on a cyclic process during 
which they absorb heat QH
from a hot reservoir and 
discard some heat QC to a 
cold reservoir.

• Picture at the right shows a 
schematic energy-flow 
diagram for a heat engine.



Perpetual Motion Machines
• Perpetual Motion Machines of the

first type – these designs seek to
create the energy required for their
operation out of nothing.

• Perpetual Motion Machines of the
second type - these designs extract
the energy required for their
operation in a manner that
decreases the entropy of an isolated
system.

violation of the First Law 
(energy conservation)

violation of the Second 
Law

Word of caution: for non-cyclic processes,
100% of heat can be transformed into work
without violating the Second Law.

Example: an ideal gas expands isothermally
being in thermal contact with a hot reservoir.
Since U = const at T = const, all heat has
been transformed into work.

hot reservoir 
TH

work

h
e

at
 

impossible cyclic
heat engine



Mechanical Heat Engines
• INTAKE stroke: 

the piston descends from the top to the bottom of the cylinder, 
reducing the pressure inside. A mixture of fuel and air, is forced by 
atmospheric pressure into the cylinder through the intake port. 
The intake valve then close. 

• COMPRESSION stroke: 
with both intake and exhaust valves closed, the piston returns to 
the top of the cylinder compressing the fuel-air mixture.

• POWER stroke: 
the compressed air–fuel mixture in a gasoline engine is ignited by 
a spark plug. The compressed fuel-air mixture expand and move 
the piston back

• EXHAUST stroke: 
during the exhaust stroke, the piston once again returns to top 
while the exhaust valve is open and  expel the spent fuel-air 
mixture out through the exhaust valve(s).





• If the process is adiabatic, no heat flows into or out of the gas

• In an isothermal process, the temperature does not change.
– The internal energy must be constant.
– The change in internal energy, U, is zero.
– If an amount of heat Q is added to the gas, an equal amount 

of work W will be done by the gas on its surroundings, from 
U = Q - W.

• In an isobaric process, the pressure of the gas remains constant.
– The internal energy increases as the gas is heated, and so 

does the temperature.
– The gas also expands, removing some of the internal energy.

Thermal Process



1. Heat flows into cylinder at temperature TH.  The fluid 
expands isothermally and does work on the piston.

2. The fluid continues to expand, adiabatically.
3. Work is done by the piston on the fluid, which 

undergoes an isothermal compression.
4. The fluid returns to its initial condition by an 

adiabatic compression.



Entropy Transfer of Heating & Work 
Transferring purely mechanical energy to or from a system does not
(necessarily) change its entropy: S = 0 for reversible processes. For this
reason, all forms of work are thermodynamically equivalent to each
other - they are freely convertible into each other and, in particular, into
mechanical work.

Work can be completely converted into heat, but the inverse is not true.
The transfer of energy by heating is accompanied with the entropy
transfer
Thus, entropy enters the system with heating, but does not leave the
system with the work. On the other hand, for a continuous operation of a
heat engine, the net entropy change during a cycle must be zero! How
is it possible???

Q
dS

T






Internal-combustion Engines

• Below illustrates a four-stroke internal-combustion engine. The 
compression ratio r is the ratio of the maximum volume to the 
minimum volume during the cycle.



The Otto cycle and the Diesel cycle
• Below show pV-diagrams for idealized Otto cycle and 

Diesel cycle engines. In both cases, the efficiency 
depends on the compression ratio r.



Perfect Engines (no extra S generated)
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The work generated during one cycle of a
reversible process:
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Real Engines
Real heat engines have lower efficiencies because the processes
within the devices are not perfectly reversible – the entropy will be
generated by irreversible processes:

max1 C

H H

TW
e e

Q T




   

e = emax only in the limit of reversible operation. Some sources of
irreversibility:

heat may flow directly between reservoirs;

not all temperature difference TH – TC may be available
(temperature drop across thermal resistances in the path of the heat
flow);

part of the work generated may be converted to heat by friction;

gas may expand irreversibly without doing work (as gas flow into
vacuum).



The Price Should be Paid...
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hot reservoir, TH 

cold reservoir, TC

Thus, the only way to get rid of the
accumulating entropy is to absorb
more internal energy in the heating
process than the amount converted
to work, and to “flush” the entropy
with the flow of the waste heat out
of the system.

An engine can get rid of all the
entropy received from the hot
reservoir by transferring only part
of the input thermal energy to the
cold reservoir.

“Working substance” – the system
that absorbs heat, expels waste
energy, and does work (e.g., water
vapor in the steam engine)

T

Q
Sd




Essential parts of a heat engine
(any continuously operating
reversible device generating work
from “heat”)

An essential ingredient: a
temperature difference between hot
and cold reservoirs.



Consequence
Any difference TH –TC  0 can be exploited to generate

mechanical energy.

The greater the TH –TC difference, the more efficient the
engine.

Energy waste is inevitable.

Example: In a typical nuclear power plant, TH = 3000C (~570K),
TC = 400C (~310K), and the maximum efficiency emax=0.45. If the
plant generates 1000 MW of “work”, its waste heat production is
at a rate

- more fuel is needed to get rid of the entropy then to generate
useful power.

1
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Efficiency
benefit

General definition: efficiency = 
cost

benefit cost efficiency

heat engine W Qh W/Qh

refrigerator Qc W Qc/W

heat pump Qh W Qh/W



Natural Refrigeration
• The natural method includes the utilization of ice or snow 

obtained naturally in cold climate. Ice melts at zero degree 
centigrade. So, when it is placed in a system or space 
warmer than that temperature,  heat is absorbed by the ice 
and the space is cooled.

• The different methods of natural refrigeration include:
Use of ice transported from colder regions
Use of ice harvested in winter and stored in ice houses
Use of ice produced by nocturnal cooling
Use of evaporative cooling
Cooling by salt solution



Mechanical Refrigeration
• This consists of a refrigeration cycle , where heat is 

removed  from a low temperature space or source and 
rejected to a high temperature sink with the help of 
external work.

• Heat naturally flows from hot to cold. Work is applied to 
cool a living space or storage volume by pumping heat from 
a lower temperature heat source into a higher temperature 
heat sink. Different types of artificial refrigeration include: 
Vapor compression refrigeration, Vapor  absorption 
refrigeration, Gas cycle refrigeration, Thermoelectric 
refrigeration, Magnetic refrigeration



Vapor compression refrigeration:
The vapor compression cycle is used in most household refrigerators as well as 
in many large commercial and industrial refrigeration systems.
 In this method,a circulating refrigerant such as Freon enters the 

compressor as a vapor during which it is compressed at constant entropy 
and exits the compressor as a vapor at a higher temperature.

 This heated vapor travels through the condenser which cools the vapor and 
condenses it into a liquid by removing additional heat at constant 
temperature and pressure.

 This liquid refrigerant now goes through the expansion valve or throttle 
valve, where its pressure abruptly decreases,which results in a mixture of 
liquid and vapor at a lower temperature and pressure.

 This cold liquid vapor mixture then enters the evaporator coil and is 
completely vaporized by cooling the warm air being blown by a fan across 
the evaporator coil.

 The evaporator is the main component of the system that produces the 
cooling effect by extracting heat from the working space.

 The resulting refrigerant vapor returns to the compressor inlet and the 
cycle repeats.





Vapor Absorption Refrigeration

 This absorption cycle is almost similar to the compression 
cycle, except for the method of raising the pressure of 
refrigerant vapor.

 In this,the compressor is replaced by an absorber which 
dissolves the refrigerant in a suitable liquid.

 A liquid pump raises the pressure and a generator,which on 
heat addition,drives off the refrigerant vapor from the high 
pressure liquid.

 A suitable combination of refrigerant and absorbent is used in 
this method. The most common combinations are ammonia 
as a refrigerant with water as an absorbent and water as 
refrigerant with lithium bromide as an absorbent.





Gas Cycle Refrigeration

 In this, the working fluid is a gas that is compressed 
and expanded but doesn’t change phase.

 Air is most often the working fluid.

 As there is no condensation and evaporation, the 
components corresponding to the condenser and 
evaporator are the hot and cold gas-to-gas heat 
exchangers.



Thermoelectric Refrigeration
 When an electrical 

current is applied across 
the junction of two 
dissimilar metals, heat is 
removed from one of the 
metals and transferred to 
the other. 

 Cooling is achieved 
electronically using the 
"Peltier" effect - heat is 
pumped with electrical 
energy.



Magnetic Refrigeration
 Magnetic refrigeration is also known as adiabatic 

demagnetization.
 It is based on the principle of magnetocaloric effect
 The refrigerant often used is a paramagnetic salt, such as 

cerium magnesium nitrate.
 A strong magnetic field is applied to the refrigerant, forcing 

its various magnetic dipoles to align and putting the degrees 
of freedom of it into a state of lowered entropy.

 A heat sink then absorbs the heat released due to its loss of 
entropy.

 The application of this is limited to cryogenics and research 
because only a few materials exhibit the desired properties at 
room temperature.



Thermoelectric refrigeration systems: It uses the Peltier 
effect to absorb heat at the junction between two wires 
made of different metals. These devices are lightweight, 

but not very efficient.



Refrigerators
• A refrigerator is also a form of a heat pump.

• It also moves heat from a cooler reservoir to a warmer 
reservoir by means of work supplied from some external 
source.

• It keeps food cold by pumping heat out of the cooler 
interior of the refrigerator into the warmer room.

• An electric motor or gas-powered engine does the 
necessary work.

• We can create a refrigerator by running a Carnot 
engine backwards: the gas extracts heat from the 
cold reservoir and deposit it in the cold reservoir.



More on Refrigerators

The purpose of a refrigerator is to make 
thermal energy flow from cold to hot. A 
refrigerator takes heat from a cold place 
(inside the refrigerator) and gives it off 
to a warmer place (the room). An input
of mechanical work is required to do 
this. A refrigerator is essentially a heat 
engine operating in reverse.
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Heat Pumps, and Entropy

• If a heat engine is run in reverse, 
then work W is done on the 
engine as heat QC is removed 
from the lower-temperature 
reservoir and a greater quantity 
of heat QH is released to the 
higher-temperature reservoir.

• A device that moves heat from a 
cooler reservoir to a warmer 
reservoir by means of work 
supplied from some external 
source is called a heat pump.

W QC QH



Mechanical Refrigerator
• Picture below shows the principle of the mechanical 

refrigeration cycle and how the key elements are 
arranged in a practical refrigerator.



Mechanical air conditioner
• An air conditioner works on the same principle as a refrigerator. A 

heat pump operates in a similar way.



Applications of Refrigeration
• Central Air Conditioning
• Food Storage
• Making of ice
• Ice-Cream plants
• Industrial applications
• Hospital operation Theatre
• Research Laboratories
• Computer Rooms
• Production Of Rocket fuels(Cryogenic Fuel)
• Cryonics Project



Uses in Farm
• In order to reduce humidity levels and spoiling 

due to bacterial growth, refrigeration is used
• for meat production and dairy processing in 

farming today. Refrigeration systems are used 
• heaviest in the warmer months for farming 

produce, which must be cooled as soon as 
possible 

• in order to meet quality standards and increase 
the shelf life. Meanwhile, dairy farms refrigerate

• milk year round to avoid spoiling.



Differences between Refrigeration & 
Air Conditioning

• Sources
– Refrigeration, in general, refers to any process 

where thermal energy is taken away from a place 
and transferred to a place with a higher 
temperature.

– Air conditioning is a type of 
refrigeration where thermal energy is taken away 
from the air (typically in a room or a vehicle) in 
order to keep the air cooler.



Process
• Refrigeration is a process where thermal energy is 

transferred from a place with lower temperature to a 
place with higher temperature using energy, against 
the natural flow of heat.

• Air conditioning is a type of refrigeration which is 
used to cool large volumes inhabited by people.

Functions
• Refrigeration is concerned only with regulating the 

temperature of a volume of air.
• Air conditioning is concerned with not only 

maintaining the temperature of a volume of air, but 
also maintaining the humidity and purity.


