MODUL PRAKTIKUM STUDIO GIS

Overlay

Analisis Banjir

Dosen: Siska Amelia

PROGRAM STUDI TEKNIK PERENCANAAN WILAYAH DAN KOTA UNIVERSITAS KRISNADWIPAYANA 2017/2018

Banjir merupakan fenomena alam yang paling sering terjadi di seluruh dunia. Dari data yang ada kasus di Indonesia banjir merupakam bencana yang sering terjadi di Indonesia ditinjau dari frekuensinya. Berdasarkan data yang dikeluarkan oleh BNPB tercatat sepanjang tahun 2017 sebanyak terjadi 2.175 kejadian bencana di Indonesia, yang terdiri dari banjir (737 kejadian), puting beliung (651 kejadian), tanah longsor (577 kejadian), kebakaran hutan dan lahan (96 kejadian), banjir dan tanah longsor (67 kejadian), kekeringan (19 kejadian), gempa bumi (18 kejadian), gelombang pasang/abrasi (8 kejadian), serta letusan gunung api (2 kejadian). Dari data tersebut dapat dilihat banjir merupakan bencana yang paling sering terjadi. Faktor penyebab banjir tersebut diantaranya adalah hujan dengan intensitas tinggi dan berlangsung lama, lemahnya pengawasan terhadap penggunaan lahan (*landuse*) pada zona-zona yang rentan bencana banjir.

Materi Praktikum kali ini adalah menganalisis kawasan banjir di Kabupaten Garut khususnya di wilayah 1 yang terdiri dari Kec. Selawi 1, Kec. Blubur Limbangan, Kec. Malangbong, Kec. Cibatu, Kec. Cibiuk, Kec. Kadungora, Kec. Leles, Kec. Leuwigoong, Kec. Sukawening, Kec. Wanaraja, Kec. Banyuresmi, Kec. Samarang, Kec. Tarogong, Kec. Karangpawitan, Kec. Garut Kota, Kec. Cilawu, Kec. Bayongbong, Kec. Cisurupan. Analisis dilakukan dengan menggunakan software ArcGis 10.3. Paremeter yang digunakan untuk analisis banjir adalah kelerengan, tutupan lahan (*landcover*), jenis tanah dan curah hujan.

Tahapan-tahapan yang dilakukan dalam melakukan analisis banjir adalah melakukan proses Geoprocessing yang merupakan salah satu fasilitas dalam ArcGis untuk membuat data baru berdasarkan theme pada window view yang dapat diaktifkan melalui Wizard melalui Arc Toolbox Wiew dengan memilih analysis tools.:

 Mempersiapkan Peta Wilayah Administrasi Kabupaten Garut (kec_Garut.shp) dan melakukan pemisahan menjadi wilayah 1 dengan cara melakuan proses *Dissolve* yang berfungsi untuk penyederhanaan data. Hasil *dissolve* di simpan sebagai kel_1Garut.shp

Tools Dissolve digunakan untuk meleburkan objek-objek yang mempunyai atribut yang sama atau menyederhanakan

2. Menyiapkan peta-peta yang di gunakan sebagai parameter (kelerengan, tutupan lahan, jenis tanah dan curah hujan) untuk melakukan analisisa banjir. Langkalangkah yang dilakukan dengan menyiapkan peta kel_1Garut.shp dan peta kelerengan (garut.shp), dengan menggunakan tools Clip (memotong data), dengan langkah-langkah membuka tools geopresessing → *Clip* dan memasukan input feature garut, clip feature kel_1Garut, output feature class sebagai Garut_LRG_Kel1.shp. Hal yang sama dilakukan untuk tanah dan tutupan lahan.

Hal yang sam juga dilakukan untuk parameter curah hujan tetapi menggunakan input yang berbeda (input feature adalah Garut_CH.shp)

3. Sebelum melakukan proses overlay, terlebih dahulu dilakukan pengelompokkan dan memberikan bobot dan skoring masing-masing parameter serta penentuan kelas banjir tersebut. Langkah-langkah yang dilakukan dengan manambahkan field pada data atribut (skor tutupan lahan, kelerengan, jenis tanah dan curah hujan). Dilakukan juga penyederhanaan (dissolve) untuk masing-masing parameter.

Parameter		Bobot	
LC	Tutupan lahan	30	0,3
Т	Jenis Tanah	10	0,15
LRG	Kelerengan	30	0,3
СН	Curah Hujan	30	0,25
Total		100	1

Skoring Parameter						
	Hutan	1	0,3			
	Perkebunan, Semak	2	0,6			
Tutupan lahan	Pertanian, sawah, tegalan	3	0,9			
	Permukiman	4	1,2			
	Lahan Tanpa vegetasi	5	1,5			
	Dystrandepts; Humitropepts; Hydrandepts	3	0,45			
	Dystrandepts; Tropudults; Eutropepts	2	0,3			
	Dystropepts; Eutropepts; Tropudalfs;	2	0,3			
Jenis Tanah	Dystropepts; Tropudults; Troporthents	2	0,3			
	Euntrandepts; Tropudults; Tropohumults	4	0,6			
	Eutropepts; Tropaquepts	5	0,75			
	Tropudalfs; Tropudults	1	0,15			
	<2	5	1,5			
	2-8	5	1,5			
Kelerang	8-15	4	1,2			
Kelerang	15 - 25	3	0,9			
	25 - 40	2	0,6			
	>40	1	0,3			
	2500 - 3000 mm	3	0,75			
	2000 - 2500 mm	2	0,5			
Curah Hujan	1500 - 2000 mm	1	0,25			
	3000 - 3500 mm	4	1			
	>3500 mm	5	1,25			

Hal yang sama dilakukan untuk parameter kelerengan, jenis tanah dan curah hujan.

4. Setelah melakukan pembobotan dan penskoringan masing-masing parameter dilakukan proses analisis overlay (Overlay merupakan proses penyatuan data dari lapisan layer yang berbeda, dalam hal ini dilakukan analisis union (yaitu menggabungkan fitur dari sebuah tema input dengan poligon dari tema overlay untuk menghasilkan output yang mengandung tingkatan atau kelas atribut):

- 5. Hasil overlay ke empat parameter tersebut (Union_Garut_LC_LRG_T_CH.shp) dilakukan penambahan field atribut total skor yang merupakan pengelompokan dari kelas banjir, dengan menggunakan fasilitas kalkulator yang merupakan penjumlahan dari skor masing-masing parameter dibagi 4. Hasil perhitungan tersebut dikelompokkan lagi, dalam kasus ini dikelompokkan menjadi tiga kelompok, yaitu:
 - 0,25 0,5 kategori rendah/aman
 - 0,75 kategori sedang
 - 1-1,25 kategori tinggi/bahaya

6. Dari layer Union_Garut_LC_LTG_T_CH.shp dilakukan lagi proses penyederhanaan (dissolve) untuk menampilkan peta analisa kawasan banjir Kabupaten Garut Kel1 dalam hal ini menjadi Garut_kel1_Kategori Banjir

 Untuk mengetahui luasan kawasan banjir di kawasan Garut kel1 dapat dihutung dengan menggunakan calculate geometrik dengan langkah-lang pada data atribut layer Union_Garut_LC_LTG_T_CH.shp ditambahkan tabel type double (add field) luas, calculate geometric unit Hektar (Ha)

Dari hasil analisis kawasan banjir di Garut dalam hal ini Kelompok Garut satu, pengkategorian/pengelompokkan kelas banjir (Rendah, Sedang, Tinggi) didapat dilihat dari peta kawasan banjir dengan kategorinya menyebar di seluruh kecamatan yang ada di kawasan wilayah Garut kel 1. Total luasan kategori kawasan banjir adalah:

- Kategori Rendah → 11.421,74 Ha
- Kategori Sedang \rightarrow 72.345,50 Ha
- Kategori Tinggi \rightarrow 33.040,64 Ha

Dari tolal luasan tersebut dapat dilihat bahwa kawasan Garut Kel 1 yang terbanyak sebagai kategori sedang diikuti kategori tinggi terhadap bencana banjir.

Bila kita kelompokkan menurut kecamatan yang ada di wilayah Garut Kel 1 sebagaimana yang diperlihatkan pada tabel di bawah ini, maka dapat kita lihat kecamatan yang mempunyai kawasan terluas terhadap bahaya banjir kategori tinggi adalah Kecamatan Bayongbong seluas 4.386,93 Ha, kategori sedang adalah kecamatan Malangbong seluas 8.235,17 Ha.

Kacamatan	Kategori Banjir			
Recallatali	Rendah	Sedang	Tinggi	
BANYURESMI	705,04	2.997,90	1.766,52	
BAYONGBONG	486,83	3.810,54	4.386,93	
BLUBUR LIMBANGAN	240,04	5.498,15	1.097,66	
CIBATU	1.619,95	5.683,54	345,37	
CIBIUK	325,10	896,28	520,90	
CIKAJANG	0,00	-	-	
CILAWU	644,45	4.284,20	2.966,77	
CISURUPAN	701,72	5.037,02	3.552,58	
GARUT KOTA	-	2.221,36	1.048,32	
KADUNGORA	192,93	2.322,65	1.785,97	
KARANGPAWITAN	60,22	2.439,30	2.143,87	
LELES	2.252,83	3.605,27	642,20	
LEUWIGOONG	-	1.839,25	557,13	
MALANGBONG	1.370,92	8.235,17	1.869,88	
SAMARANG	223,44	6.476,63	3.378,37	
SELAAWI	897,98	3.269,52	2.016,71	
SUKAWENING	1.140,69	4.704,45	1.024,19	
TAROGONG	291,63	2.798,20	1.338,73	
WANARAJA	267,95	6.226,06	2.598,52	
Total	11.421,74	72.345,50	33.040,64	

Tabel Luas Kawasan Rawan Banjir Per-Kecamatan

Daftar Pustaka

- Barus, Baba. Wiradisastra U.S. Sistem Informasi Geografis Sarana Manajemen Sumberdaya. 2009. Laboratarium Pengeindraan Jauh dan Kartografi. Jurusan Tanah Fakultas Pertanian. Institut Pertanian Bogor.
- Darmawan, Kurnia. Hani'ah Suprayogi, Andri. 2017. Analisis Tingkat Kerawanan Banjir di Kabupaen Sampang Manggunakan Metode Overlay dengan Scoring Berbasis Sistem Informasi Geografis. Jurnal Geodesi Undip Volume 6 Nomor 1 (ISSN: 2337-845X).
- Prahasta, Eddy. 2004. Sistem Informasi Geografis Tools dan Plug-Ins. Penerbit Informatika. Bandung
- Pramono, Dwi Agung. 2016. Sebaran Jenis Tanah di Sub Daerah Aliran Sungai Karang Mumus Menggunakan Sistem Informasi Geografis. JTIULM Volume I no. 2 hal: 31-43. Bulan Desember.
- www.academia/edu/8778680/Analisis Dan Pemetaan Daerah Rawan Banjir di Kot a Makassar Berbasis Spasial. Diunduh 19 April 2018.
- 2017. Dasar-dasar ArcGis untuk Perencanaan. Modul Pelatihan Mata Kuliah Studio GIS. Prodi Perencanaan Wilayah Kota. Fakultas Teknik Universitas Krisnadwipayana.
- 2017. Peningkatan Kapasitas Pelaksana Pengendalian Pemanfaatan Ruang Berbasis SIG. Modul Pelatihan Direktorat Pengendalian Pemanfaatan Ruang ditjen Pengendalian Pemanfaatan Ruang dan Penguasaan Tanah. Kementerian Agraria dan Tata Ruang.