Interpretative Analysis and Testing Statistics to test questions testing the Mobile Government questionnaire against the model of readiness and successful adoption

1st Muhammad Syarif Hartawan Information System, Faculty of Technology, University of Krisnadwipayana, Jakarta, Indonesia Asia e University, Malaysia muhammadsyarif@unkris.ac.id 2nd IGN Mantra Informatics Engineering Perbanas Institute Jakarta, Indonesia ign.mantra@perbanas.id 3rd I Wayan Widi Pradnyana Information System Universitas Pembangunan Nasional Veteran Jakarta Jakarta, Indonesia wayan.widi@upnvj.ac.id

Abstract— In Mobile Government Research is increasingly developing in the era of information that is very quickly accessible to employees in the achievement of information. The purpose of this study is at the level of readiness and success of mobile government users through analysis. Research questionnaires about the mobile government that will be obtained will be analyzed using SMARTPLS 2. which includes testing. This research produces interpretive data to confirm the results of statistical analysis in testing the cellular government questionnaire. The results of this study are expected to be a reference and literature for the government in developing cellular governance and can provide solutions for further development of cellular governance. From the results of this study, 67% of respondents have the ability to use mobile at the level of 81-100%. and 63% of respondents stated that the position is very ready to use the mobile government (m-Gov).

Keywords— e-Government, m-Government, Model Development, Adoption Model, User Experience (UX).

I. INTRODUCTION

Progress in research is the publication of the results of a questionnaire assessment of respondents. Therefore the purpose of this study is to examine the questionnaire questions for testing mobile government research is very necessary to be accurate. Assessments are based on the perceptions of the respondents and the researcher's perspective.

To be able to measure this respondent researchers used statistical analysis and interpretation analysis in research conducted through filling out questionnaires involving responders from government employees and general procedures that are often done [1.2]. Sometimes in the combined analysis literature, it has not been clearly revealed. So that the questions from the questionnaire were taken from previous work and new instruments for the development of technology that developed at the beginning of this research [3].

II. RESEARCH METHODS

This study systematically collects related data and uses descriptive analysis methods by taking examples of mobile government users of government employees. Observation and presentation of data analysis is a technique used in this study so that it can reveal the latest facts, or the analysis data obtained will be more objective.

In addition to reviewing the literature study, this stage also formulates the research program that will be conducted. Then, in the second stage (S2) a model was developed by adopting, combining and adapting the previously developed model. This stage begins with the first sub-chapter (S2.1) by developing a set of assumptions based on the theory selected and initiated (Table 1).

Figure 1. Research procedure

Finally, the stage of making a report (S4) the researcher makes a report on the research model developed and the data collection instrument which is then proposed at the reporting stage, in terms of conducting research.

In table 1 contains the theory of Mobile Government (m-Gov) readiness and success models.

TABLE I	
LIST OF THE BASIC MODELS AND TH	EORIES
List of the Basic Models and Theories	References
Information processing theory	[13, 14]
Model of IS readiness and success	[4, 5, 6, 9, 10, 15]
Usability theory	[7]
Security theory	[8]
User experience theory	[11, 12]

III. RESULTS AND DISCUSSION

Table 2 lists the variables that will be used for mobile government (m-Gov) research.

TAI	ЗL	Æ	Π	

LIST OF THE VARIABLES			
Var.	Definitions		
OPT	The degree of trust and positive views on the use of		
	IS/IT		
INN	The degree of tendency to try and explore the use of		
	IS/IT		
DIS	The degree to understand the inconvenience of using		
	IS/IT and lack of mastery of the use of IS/IT		
INS	The level of understanding the lack of trust in the use		
	of IS raises doubts about its use		
USB	The degree to assess how easily the system interface		
	is used		
INQ	The degree to which information can consistently		
	meet all the requirements and expectations of users		
	in doing their work		
SYQ	The degree to describe the quality of IS content		
SVQ	The degree of system service excellence to its users		

USF	The degree of user satisfaction when utilizing IS/IT as
	a result of the project
UEX	User Experience
GSS	IS achievement is based on planning implementation

Table 3 lists the indicators that will be used for this research.

I ABLE III List of the Indicators			
Indicators Definitions			
Easiness (OPT1)	The degree related to the ability of a system to		
	provide freedom from obstacles, difficulties,		
	and problems		
Connectivity	The degree related to the ability of a system to		
(OPT2)	connect successfully with other systems		
Efficiency	The degree associated with achieving the		
(0P13)	system to produce output compared to the		
Problem Solving	The degree related to system support to find		
(INN1)	solutions to problems		
Independence	The degree associated with the system's ability		
(INN2)	to support its users is free of control or		
	influence		
Challenge	The degree associated with system support is		
(INN3)	successfully handling or achieving something		
<u> </u>	in a difficult situation or problem		
Complexity	The degree associated with system features are		
(DIST)	The degree related to the condition of a system		
Difficulty (DIS2)	that cannot be operated easily		
Dependence	The degree related to the condition of a system		
(DIS3)	that requires another party to operate it		
Failure (INS1)	The degree associated with the possibility that		
	an unpleasant or dangerous system might		
	occur		
Threat (INS2)	The degree associated with the system		
	situation that can cause danger or danger		
Reducing	The degree related to the implementation of a		
Interaction	system that makes human interaction less in		
(INS3)	size, number, and importance		
(USD1)	The degree of efficiency of IS use		
(USBI)	The degree of ease in studying IS usage		
(USB2)	The degree of ease in studying is usage		
Memorability	The degree of ability to remember how to		
(USB3)	interact with IS without difficulty or error		
Accuracy	The degree of conformity of information		
(INQ1)	produced by the system to the actual standard		
Timeliness	The degree of accuracy of IS information		
(INQ2)	processing at the planned time duration		
Completeness	The degree of information produced by IS is		
(INQ3)	the whole or without the missing part		
Ease of Use	I he degree of freedom by IS from obstacles,		
(SIQI) Maintainability	The degree associated with the ease of IS in its		
(SVO2)	maintenance		
Respons Time	The degree related to the amount of time it		
(SYQ3)	takes for the IS to respond to the user's		
	command		
Responsiveness	The degree of reaction IS to serve the user		
(SVQ1)	with the appropriate way, time and situation		
Flexibility	The degree of adaptation IS to serve its users		
(SVQ2)	according to the demands requested		
Security	The degree of an integrated security system to		
(SVQ3)	service users sate from attacks, hazards, or		
Soourity Acces-	The degree of system accurity when a very		
(SCR1)	login		
Data	The degree of system canability in		
Confidentiality	maintaining user data so that it is difficult for		
(SCR2)	others to know and understand		
Security	The degree of system capability in ensuring		
Guarantee	the security of the user's personal information		
(SCR3)	- •		

Efficiency	The degree of IS user satisfaction based on	
(USFI)	achieving the system to produce output	
	compared to the resources needed to achieve	
	output	
Effectiveness	The degree of IS user satisfaction is based on	
(USF2)	the ability of the system to meet the needs of	
	users to achieve their goals	
Flexibility	The degree of IS user satisfaction is related to	
(USF3)	the adaptability of the system according to the	
	demands requested	
Navigation	The degree of Mobile App's ability to allow	
(UEX1)	users to easily and quickly find the	
	functionality or information they need	
Error Handling	The degree of Mobile App's ability to	
(UEX2)	minimize user errors. Mistakes must be easy	
	and quickly understood so that users can move	
	forward with their tasks	
Understanding	The degree of capability of Mobile App with	
(UEX3)	its small screen can provide instant application	
	function security	
IS Efficiency	The degree related to the comparison of the	
(GSS1)	value of the IS output and the resources	
, í	needed to reach the output	
IS Effectiveness	The degree associated with the ability of the	
(GSS2)	system's ability to meet the needs of users to	
	achieve their goals	
User Satisfaction	The extent to which SI helps users create	
(GSS3)	value for their business	

The author distributed 54 questionnaire questions, which is distributed based on the characteristic experience of the respondent profile. Distribution Questionnaire via Google Form. Data collected is processed using SmartPLS 2. a list of questions can be seen in table 4 below.

TABLE IV	
LIGT OF THE OUTGTION NUMBER OF THE OW	.

EIST OF THE QUESTIONNAIRE STATEMENTS
Statement of the questionnaires
OPT1 - The system is free of obstacles, difficulties, and problems
OPT2 - The system can be easily connected with other systems
OPT3- The system runs efficiently
INN1- The system is a problem solving tool
INN2- System helps users, free from control and influence
INN3- System helps users reach their goals in difficult
conditions/problems
DIS1- The system confuses users in its use
DIS2- The system is not easy to use
DIS3- The system is not free to use
INS1- The system does not work according to its development plan
INS2- The system is in a condition that can cause harm or danger
INS3- The system makes users interact less
USB1- The system efficient to use
USB2- System easy to learn
USB3 - The way to use the system is easy to remember
INQ1- The system produces information accurately
INQ2- The system produces information in a timely manner
INQ3- The system produces complete information
SYQ1- The system is easy to use
SYQ2- The system is easy to maintain
SYQ3- The system is able to respond quickly to the commands
given
SVQ1- The system provides services quickly
SVQ2- The system provides flexible services according to user
conditions
SVQ3- The system provides safe services
SCR1- The system is generally accessible
SCR2- The system can maintain the confidentiality of user data
SCR3- The system can guarantee the security of the user's personal
information
USF1- Users are satisfied with the level of efficiency of the system
USF2- users are satisfied with the level of effectiveness of the
system
USF3- Users are satisfied with the level of flexibility of the system
UEX1- Features, and Information in Mobile App that users need are
fast and easy to find

148

UEX2- Mobile App can minimize usage errors, input and click
errors can be easily and quickly understood by users
UEX3- Mobile App functions can be understood instantly
GSS1- The implementation of government systems is carried out
efficiently
GSS2- The implementation of government systems is carried out
effectively
GSS3- Application of government systems increases user
satisfaction

Characteristics of the respondents' data are education data, position data, experience data, and skill level data in using mobile applications (m-Government). The results of data collection can be seen in table 5 below about the characteristics of respondents in government seen the readiness and success in the use of government mobile applications (m-Government).

	TABLE V	
(CHARACTERISTIC RESPONDENT	
Measures	Items	%
Education	High School	0
	Diploma	0
	Bachelor	67
	Master	33
	Doctor	0
Position	Minister	0
	Secretary-General /	0
	Director General / Head	
	of Agency	
	Head of Bureau / Head	0
	of Center / Agency	
	Secretary/Director's	
	Secretary	
	Head of Division	0
	Head of Sub Division	23
	Head of Section	20
	Staff	57
Experience	< 2 years	0
	2-5 years	3
	5-10 years	57
	> 10 years	40
Skill	Very unskilled	0
	Unskilled	0
	Less skilled	0
	Skilled	77
	Very skilled	23
Ct t' t' 1 D	· · · ·	

source: Statistical Processing

TABLE VI	

READINESS AND SUCCES			
Measures	Items	%	
Level Of Readiness	Very Ready	63	
For Use Of Mobile	Ready	30	
Government (m-Gov)	Less Ready	7	
	Not Ready	0	
	Very Unprepared	0	
Level of Mobile	<20%	0	
Government (m-Gov)	21-40%	0	
Usage	41-60%	3	
-	61-80%	30	
	81-100%	67	
Factors That	Availability of costs	37	
Influencing	Availability of HR	30	
Readiness Of Use	Availability of technology	17	
Mobile Government	Availability of Data	17	
(m-Gov)			
(Technical)			
Factors That	Availability of costs	47	
Influencing	Availability of HR	23	
6	Availability of technology	23	
	Availability of Data	7	

Readiness Of Use		
Mobile Government		
(m-Gov)		
(Managerial)		
Factors That	Work System and Culture	17
Influencing	Support Staff	10
Readiness Of Use	Coordination Staff	10
Mobile Government	Commitment Staff	17
(m-Gov)	Leadership Support	7
(Institutional)	Leadership Coordination	17
	Leadership Commitment	23
The Readiness Factor	Very influential	53
Affects	Take effect	40
Use of Mobile	Less influential	7
Government (m-Gov)	No Effect	0
· /	Not Very influential	0

The results of data collection on the characteristics of respondents can be seen in Table that in terms of readiness and success in the use of mobile government (m-Gov), it provides recommendations for researchers that 67% of the data collected by respondents was filling in 81-100% having a level of mobile users Government (m-Gov). And 63% of respondents expressed their readiness at the level of being very ready to use the mobile government (m-Gov).

The Statistical Analysis Result

Stages of statistical analysis, there are several stages in processing the questionnaire. The stages consist of evaluating the reflective measurement model and evaluating the structural model. Table 7 shows the test data on Reliability And Validity Of Construction.

Figure 3.1. Research model mobile government

		TABLE VII	·
	CONSTRUCT	RELIABILITY	AND VALIDITY
	Cronbach's	Composite	Average
	Alpha	Reliability	Variance
			Extracted
			(AVE)
OPT	-0,386	0,118	0,433
INN	-0,639	0,115	0,387
DIS	-0,346	0,097	0,402
INS	-0,134	0,066	0,368
USB	0,409	0,449	0,636
INQ	0,475	0,742	0,681
SYQ	0,610	0,816	0,631
SVQ	0,433	0,319	0,594
SCR	0,453	0,727	0,673
USF	0,600	0,800	0,667
UEX	0.000	0,333	0,333
GSS	0,000	0,333	0,333

978-1-7281-2930-3/19/\$31.00 ©2019 IEEE

149

TABLE VIII.
CROSS LOADING

								<u> </u>				
	DIS	GSS	INN	INQ	INS	OPT	SCR	SVQ	SYQ	UEX	USB	USF
DIS1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DIS2	-0,526	0,122	0,001	0,050	0,125	0,327	0,070	0,089	-0,099	0,122	-0,268	-0,138
DIS3	0,964	-0,219	-0,156	-0,277	-0,538	-0,668	-0,299	-0,135	-0,068	-0,219	0,833	-0,020
GSS1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GSS2	-0,228	1,000	0,580	0,518	0,521	0,812	0,593	0,504	0,530	1,000	-0,722	0,380
GSS3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
IN2	-0,110	0,502	0,802	0,986	0,903	0,500	0,975	0,779	0,326	0,502	-0,372	-0,030
IN3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
INN1	-0,039	0,352	0,375	0,069	0,079	0,286	0,095	0,083	0,919	0,352	-0,251	0,927
INN2	0,135	-0,273	-0,656	-0,175	-0,195	-0,255	-0,186	-0,733	-0,322	-0,273	0,236	-0,287
INN3	-0,084	0,452	0,769	0,950	0,865	0,437	0,941	0,744	0,192	0,452	-0,331	-0,122
INQ1	-0,110	0,502	0,802	0,986	0,903	0,500	0,975	0,779	0,326	0,502	-0,372	-0,030
INQ2	-0,110	0,502	0,802	0,986	0,903	0,500	0,975	0,779	0,326	0,502	-0,372	-0,030
INQ3	0,923	-0,215	-0,163	-0,313	-0,544	-0,689	-0,335	-0,124	-0,105	-0,215	0,799	-0,051
INS1	0,964	-0,219	-0,156	-0,277	-0,538	-0,668	-0,299	-0,135	-0,068	-0,219	0,833	-0,020
OPT1	-0,404	0,198	0,033	0,080	0,121	0,316	0,117	0,109	-0,082	0,198	-0,239	-0,126
OPT2	0,923	-0,215	-0,163	-0,313	-0,544	-0,689	-0,335	-0,124	-0,105	-0,215	0,799	-0,051
OPT3	-0,232	0,939	0,626	0,594	0,592	0,851	0,631	0,566	0,531	0,939	-0,698	0,337
SCR1	-0,110	0,502	0,802	0,986	0,903	0,500	0,975	0,779	0,326	0,502	-0,372	-0,030
SCR2	0,923	-0,215	-0,163	-0,313	-0,544	-0,689	-0,335	-0,124	-0,105	-0,215	0,799	-0,051
SCR3	-0,134	0,646	0,811	0,959	0,883	0,565	0,978	0,770	0,381	0,646	-0,465	0,049
SVQ1	0,113	-0,275	-0,616	-0,194	-0,203	-0,246	-0,204	-0,767	-0,250	-0,275	0,216	-0,197
SVQ2	0,113	-0,275	-0,616	-0,194	-0,203	-0,246	-0,204	-0,767	-0,250	-0,275	0,216	-0,197
SVQ3	-0,110	0,502	0,802	0,986	0,903	0,500	0,975	0,779	0,326	0,502	-0,372	-0,030
SYQ1	-0,110	0,502	0,802	0,986	0,903	0,500	0,975	0,779	0,326	0,502	-0,372	-0,030
SYQ2	0,021	0,380	0,365	-0,020	-0,017	0,251	0,020	0,106	0,925	0,380	-0,229	1,000
SYQ3	-0,024	0,426	0,425	0,122	0,118	0,334	0,150	0,207	0,966	0,426	-0,277	0,946
UEX1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
UEX2	-0,228	1,000	0,580	0,518	0,521	0,812	0,593	0,504	0,530	1,000	-0,722	0,380
UEX3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
USB1	-0,228	1,000	0,580	0,518	0,521	0,812	0,593	0,504	0,530	1,000	-0,722	0,380
USB2	0,964	-0,219	-0,156	-0,277	-0,538	-0,668	-0,299	-0,135	-0,068	-0,219	0,833	-0,020
USB3	0,964	-0,219	-0,156	-0,277	-0,538	-0,668	-0,299	-0,135	-0,068	-0,219	0,833	-0,020
USF1	0,021	0,380	0,365	-0,020	-0,017	0,251	0,020	0,106	0,925	0,380	-0,229	1,000
USF2	0,021	0,380	0,365	-0,020	-0,017	0,251	0,020	0,106	0,925	0,380	-0,229	1,000
USF3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

IV. CONCLUSION

This research was conducted to develop a model of readiness and the successful adoption of the mobile government (m-Gov). This study aims to provide knowledge and alternatives and recommend models that can be applied to determine the readiness and success of the adoption of m-Gov. In developing the model, referring to previous studies, researchers developed based on previous theories rather than empirical studies. The researcher developed a model of m-Gov's readiness and success by adopting, combining, and adapting from the ISRS model which consisted of a model of readiness and success models, usability theory, security theory, and user experience theory in terms of assessing the success of government systems. The IPO logic is used by the author as a model development assumption.

In the results of readiness and success for the use of cellular governance (m-gov), it shows that 67% of respondents from the data collected by respondents fill in 81-100% of respondents having a level of Government cellular users (m-Government). And 63% of respondents expressed their readiness at the level of being very ready to use cellular government (m-Gov).

REFERENCES

- [1] [1] I. A. Alghamdi, R. Goodwin, and G. Rampersad, "A Suggested E-Government Framework for Assessing Organizational E-Readiness in Developing Countries," Berlin, Heidelberg, 2011, pp. 479-498.
- [2] [2] A. Subiyakto, A. R. Ahlan, and H. T. Sukmana, "An Alternative Method for Determining Critical Success Factors of Information System Project," TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 12, pp. 665-674, 2014 2014.
- [3] [3] M. Sheu and H. Kim, "User readiness for is development: An examination of 50 cases," Systems Research and Behavioral Science, vol. 26, pp. 49-61, 2009.
- [4] [4] A. Subiyakto, "Development of The Readiness and Success Model for Assessing the Information System Integration," presented at the International Conference on Science and Technology (ICOSAT) 2017, Jakarta, 2017.
- [5] [5] A. Subiyakto, A. R. Ahlan, S. J. Putra, and M. Kartiwi, "Validation of Information System Project Success Model," SAGE Open, vol. 5, pp. 1-14, 2015.
- [6] [6] A. Parasuraman, "Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies," Journal of Service Research, vol. 2, pp. 307-320, 2000.
- [7] [7] Y. Rogers, H. Sharp, and J. Preece, "Interaction Design: Beyond Human-Computer Interaction, Jon Wiley & Sons," ed: Inc, 2002.
- [8] [8] M. Sathye, "Adoption of Internet banking by Australian consumers: an empirical investigation," International Journal of Bank Marketing, vol. 17, pp. 324-334, 1999.
- [9] [9] W. H. DeLone and E. R. McLean, "The DeLone and McLean model of information systems success: a ten-year update," Journal of management information systems, vol. 19, pp. 9-30, 2003.
- [10] [10] A. Subiyakto, "Assessing Information System Integration Using Combination of the Readiness and Success Models," Bulletin of Electrical Engineering and Informatics, vol. 7, pp. 400-410, 2018.
- [11] [11] P. Lew and L. Olsina, "Relating user experience with MobileApp quality evaluation and design," in International Conference on Web Engineering, 2013, pp. 253-268.
- [12] [12] M. A. Yazid and A. H. Jantan, "User Experience Design (UXD) of Mobile Application: An Implementation of a Case Study," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, pp. 197-200, 2017.
- [13] [13] W. S. Davis and D. C. Yen, The Information System Consultant's Handbook: Systems Analysis and Design: CRC press, 1998.
- [14] [14] W. Kellogg, "Logic model development guide," Michigan: WK Kellogg Foundation, 2004.
- [15] [15] A. a. Subiyakto, N. A. Hidayah, G. Gusti, and M. A. Hikami, "Readiness and Success of Ubiquitous Learning in Indonesia: Perspectives from the Implementation of a Pilot Project," Information, vol. 10, p. 79, 2019.